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Abstract

Despite the impressive performance in many individual

tasks, deep neural networks suffer from catastrophic for-

getting when learning new tasks incrementally. Recently,

various incremental learning methods have been proposed,

and some approaches achieved acceptable performance rely-

ing on stored data or complex generative models. However,

storing data from previous tasks is limited by memory or pri-

vacy issues, and generative models are usually unstable and

inefficient in training. In this paper, we propose a simple non-

exemplar based method named PASS, to address the catas-

trophic forgetting problem in incremental learning. On the

one hand, we propose to memorize one class-representative

prototype for each old class and adopt prototype augmen-

tation (protoAug) in the deep feature space to maintain the

decision boundary of previous tasks. On the other hand, we

employ self-supervised learning (SSL) to learn more gen-

eralizable and transferable features for other tasks, which

demonstrates the effectiveness of SSL in incremental learn-

ing. Experimental results on benchmark datasets show that

our approach significantly outperforms non-exemplar based

methods, and achieves comparable performance compared

to exemplar based approaches.

1. Introduction

Incremental learning (IL) enables humans to acquire

novel experience continually while maintaining existing

knowledge. In dynamic and open environment, it is crit-

ical for modern artificial intelligence to have the ability of IL

because training examples in real-world applications usually

appear sequentially. For instance, a face recognition sys-

tem may encounter new faces which need to be added and

learned throughout its life without forgetting or re-learning

the people already learned. However, deep neural networks

(DNNs) tend to adjust the learned parameters to new task
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and almost fully forget previously acquired knowledge. Mo-

tivated by this, a multitude of works [28, 34, 43, 51, 42]

have recently emerged that try to alleviate the catastrophic

forgetting [16, 37, 13] problem. In this paper, we consider

a challenging scenario of class-incremental learning (CIL),

in which each task in the sequence contains a set of classes

disjoint from the old tasks, and the model need to learn a

unified classifier that can classify all classes seen at different

stages without the task-identifier at inference time.

Intuitively, catastrophic forgetting is caused by overlap-

ping or confusion between the representations of new and

old classes in the feature space. When learning new classes,

the decision boundary for previous classes can be dramati-

cally changed, and the unified classifier is severely biased.

To address this issue and maintain previous knowledge, one

can store a fraction of old data to jointly train the model with

current data [50, 43, 50, 6, 12]. However, storing data is

undesirable due to memory limits or privacy issues, in which

the data are not allowed to be stored. An alternative way is

to learn deep generative models to generate pseudo-samples

of previous classes [46, 49, 51, 25]. Nevertheless, it is inef-

ficient to train big generative models such as GAN [17, 3]

and autoencoder [27, 25] for complex datasets (e.g., natural

images). Moreover, the generative models also suffer from

catastrophic forgetting. Another direction is to identify and

penalize future changes to some important parameters of the

original model [28, 54]. These regularization strategies are

effective in scenarios where multi-head classifiers are used

and the task-identifier is available at inference. However, as

noticed in some works [23, 48], those methods show poor

performance in CIL scenario.

Besides the catastrophic forgetting, another obstacle for

IL is the task-level overfitting phenomenon, which has been

ignored by previous works. Specifically, DNNs can easily

overfit to the training task when learning task continually. In-

tuitively, the model may focus on capturing features that are

useful for current task, while discarding those less discrim-

inative directions which could capture data characteristics

for future tasks. This may not be a problem for common
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Figure 1: Motivation of PASS. (a) When learning new task, the decision boundary of previous tasks could be dramatically

changed, resulting in catastrophic forgetting. ProtoAug is proposed to restrain the decision boundary, thus maintaining the

discrimination and balance between old and new classes. (b) If the learned features are task-specific in each stage, the model

trained on previous task might be a bad initialization for current task. We propose to leverage the benefit of SSL to learn richer

and more transferable features. Intuitively, different tasks would be closer in the parameter space, and it would be easier to

find a model to perform well on all tasks, thus improving both the stability and plasticity of the model.

single task learning scenario, but leads particles influence

for IL since the model for current task is initialized with

previous model. A recent study [42] found that a model

trained from scratch using samples stored can surprisingly

outperforms many recently proposed algorithms. This study

indicates that the previous model, which mainly carries task-

specific features, might be a bad initialization for current

task, as shown in Fig. 1(b). Consequently, the model would

need more updates to perform well on current task, which

increases the forgetting problem on the other hand.

Motivated by the above analysis, we propose to improve

CIL performance by maintaining the decision boundary and

reducing task-level overfitting phenomenon, as shown in

Fig. 1. The proposed PASS mainly consists of Prototype

Augmentation and Self-Supervision. On the one hand,

prototype augmentation (protoAug) memorizes one class-

representative prototype (typically the class mean in the deep

feature space) for each old class, and augments the mem-

orized prototypes via Gaussian noise when learning new

classes. Then, the augmented prototypes and deep features

of new data are jointly classified to maintain the discrimi-

nation and balance between old and new classes. This is

inspired by a recent work [35] in long-tailed recognition

which expands the distribution of the tail classes by aug-

menting the tail classes with certain disturbances. While

[35] focuses on class-imbalance learning and learns the em-

bedding augmentation strategy from the head classes, in our

work, we focus on CIL and investigate the value of simple

Gaussian noise based augmentation.

On the other hand, we take inspiration from self-

supervised learning (SSL) to alleviate task-level overfitting

phenomenon in IL. In particular, SSL aims to learn trans-

ferable representations that would be useful for other tasks.

Inspired by the natural connection between IL and SSL, we

propose to leverage the benefit of SSL to learn task-agnostic

and transferable representations. Intuitively, with SSL, dif-

ferent tasks would be closer in the parameter space, and

the model trained on current task would be a better initial-

ization for learning the next task. In conclusion, our main

contributions are summarized as follows:

• We propose a simple and effective non-exemplar based

method to overcome catastrophic forgetting problem in

CIL by memorizing and augmenting prototypes of old

classes in the deep feature space.

• We emphasize the task-level overfitting phenomenon

in IL, and adopt self-supervised learning to learn more

generalizable and transferable features.

• Our method significantly outperforms non-exemplar

based methods and obtains comparable results com-

pared to exemplar based methods in CIL scenario.

2. Related Work

Incremental Learning. IL has been a long-standing re-

search topic. Several early approaches used nearest class

mean classifier [38] or random forest [47] for IL based on

fixed data representations. Recently, a variety of attempts

have been made to enable IL for DNNs. Regularization

strategies such as elastic weight consolidation (EWC) [28],

synaptic intelligence (SI) [54], and memory aware synapses

(MAS) [2] use different metrics to identify and penalize the

changes of important parameters of the original network

when learning a new task. An alternative solution is to per-

form implicit regularization by using knowledge distillation

technique [34, 21]. Nevertheless, it is hard to design a rea-

sonable metric to evaluate the importance of parameters of

a model, and the performances of regularization strategies

based methods for CIL remain significantly inferior to those

obtained by joint training. Recently, Yu et al., [53] found that

embedding network suffers less forgetting for CIL. However,
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Figure 2: Illustration of PASS for CIL. The classes of current task are augmented by rotation based transformation [32], and

the augmented data are fed to the feature extractor. In the deep feature space, we augment the memorized prototypes (one for

each classes) via Gaussian noise (right). Our method is non-exemplar based, simple and effective.

training embedding network with metric learning could often

be harder than softmax-based networks.

Another direction is rehearsal strategies, which provide a

strong baseline for CIL by storing and replaying a fraction

of samples from the old classes. With stored samples, some

works [50, 43, 12] use a distillation loss to prevent forgetting,

while others [44, 8] only include classification loss and con-

struct each mini-batch with an equal amount of new data and

the rehearsal data. More recently, the imbalance problem

between the previous and current tasks has been found to

be constituting a key challenge for CIL, and several works,

such as EEIL [6], BiC [50], UCIR [22] and WA [56] were

proposed to reduce the bias towards currents tasks. However,

those techniques may not be applicable without storing data.

Without directly storing raw data, a line of work [46, 49, 51]

sequentially constructs a separate generative model to gener-

ate old samples. Nevertheless, those approaches rely heavily

on the quality of the generative model. In this paper, we aim

to reduce catastrophic forgetting in CIL without storing old

data or leveraging complex generative models.

Self-Supervised Learning. Recently, learning with self-

supervision [24] has been demonstrated effective to learn

general representations, by learning some proxy tasks, e.g.

prediction rotations [15], patch permutation [40], image col-

orization [30] and clustering [4, 5]. More recently, con-

trastive losses based SSL methods [9, 18] show great suc-

cess. By SSL, the model could learn features that are un-

necessary for current task but useful for other tasks, e.g.,

semi-supervised learning [55], few-shot learning [14], and

improving robustness [20]. In particular, it has been found

that self-supervised pretraining is a good choice to initialize

the model for class-imbalance learning [52]. Lee et al., [32]

propose to augment original labels via self-supervision of

input transformation, and show that the supervised classifi-

cation accuracy could be improved by this simple technique.

Inspired by the natural connection between IL and SSL, we

employ the self-supervised method in [32] to investigate SSL

in CIL, revealing surprising yet intriguing findings that SSL

can boost the performance of CIL significantly.

3. Methodology

3.1. Problem Statement and Analysis

The goal of CIL is to sequentially learn a unified model
to classify the test samples of all classes that have been
learned so far. Specifically, the model consists of two parts:
the feature extractor Fθ and a unified classifier Gφ. Let

D = {Dt}
T
t=1

be a stream of data, where Dt = {Xt,Yt} =

{xt,j , yt,j}
Nt

j=1
is the dataset that the system receives at step

t. Dataset Dt consists of Nt labeled samples for training,
and yt,j ∈ Ct, where Ct is the class set of task t and the
class sets of different task are disjoint. At step t, the goal
is to minimize a predefined loss function L on new dataset
Dt without interfering with and possibly improving on those
that were learned previously [1]:

{θt, φt} = argmin
θt,φt,ǫ

Lt(G(F (Xt; θt);φt),Yt) +
∑

ǫi

s.t. Lt(Xi,Yi)− Li(Xi,Yi) 6 ǫi, ǫi > 0; ∀i ∈ [1, t− 1]

,

(1)

where Lt(Xi,Yi) = L(G(F (Xi; θt);φt),Yi) is the loss

of the model at t on old data set Di and Li(Xi,Yi) =
L(G(F (Xi; θi);φi),Yi) is the loss of the previous model

at i on old dataset Di. The last term ǫ = {ǫi} is a slack

variable that tolerates a small increase in old dataset.

There are mainly two obstacles in CIL: classifier bias and

task-level overfitting. First, with only new data, the decision

boundary learned previously can be dramatically changed,

and the unified classifier is severely biased. Second, it is dif-

ficult to learn general features which could be generalizable

well on other classes with data only for current classes. As

a result, the feature extractor is also biased and the param-

eter space of model at different stages would be far, which

makes it difficult to find a model to perform well on all tasks.

Therefore, from a multi-task learning perspective, learning

task-agnostic representations is important for CIL.
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Overview of Framework. The framework of our method is

shown in Fig. 2. Specifically, for each old class, we do not

store any old samples, but to memorize a class-representative

prototype in the deep feature space. Then, when learning

new task, each old prototype is augmented with certain dis-

turbances and fed to the unified classifier for classification.

Consequentially, it alleviates the distortion of the learned

feature space and the classifier bias. In addition, to reduce

the task-level overfitting, SSL is adopted to learn more gen-

eral features for other (previous and future) tasks by using

rotation-based label augmentation [32].

3.2. Prototype Augmentation

At stage t, only Dt is available for training, thus we

can not directly optimize Eq. (1). To alleviate distortion of

the feature space when learning new task, we compute and

memorize one prototype (class mean) for each classes:

µt,k =
1

Nt,k

Nt,k∑

n=1

F (Xt,k; θt). (2)

When learning new task, the prototype of each old class, e.g.

class kold at stage told, is augmented as below (shown in

Fig. 2):

Ftold,kold
= µtold,kold

+ e ∗ r, (3)

where e ∼ N (0, 1) is the derived Gaussion noise which has

the same dimension as prototype. r is a scale to control

the uncertainty of the augmented prototypes. In particular,

the scale r can be pre-defined, or computed as the average

variance of the class representations:

r2t =
1

Kold +Knew

(Kold ∗ r
2

t−1
+

Knew∑

k=1

Tr(Σt,k)

D
), (4)

where Kold and Knew represent the number of old classes

and new classes at stage t, respectively. D is the dimension

of the deep feature space. Σt,k is the covariance matrix for

the features from class k at stage t, and the Tr operation

computes the trace of a matrix. We observed that the rt
changes slightly at different stage in the course of a CIL

experiment. Therefore, one can only compute and use the

average variance of the features in the first task as follows:

r2 = r2
1
= 1

K1∗D

∑K1

k=1
Tr(Σ1,k).

Then, the features of new classes and the augmented

prototypes are feed to the unified classifier. As a result,

Eq. (1) could be empirically approximated by Eq. (5):

{θt, φt} = argmin
θt,φt,ǫ

{Lt(G(F (Xt; θt);φt),Yt)

+

t−1∑

i=1

L(G(Fi;φt),Yi)},
(5)

where Fi represents the features augmented for old class set

Ci. Intuitively, in the feature space, the prototypes of old

classes are augmented with soft variance, which represents

the confidence of reality of the features generated. During

training with current data, the augmented features are feed

to classifier to maintain discrimination and balance among

all classes that have been learned so far.

3.3. SSL based Label Augmentation

Inspried by [32], we simply learn a unified model by

augmenting the current class based on SSL. Specifically,

for each class, we rotate its training data 90, 180, and 270

degrees to generate 3 novel classes, extending the original

K-class problem to a new 4K class problem:

X
′
t = rotate(Xt, θ), θ ∈ {90, 180, 270}, (6)

and the augmented sample is assigned a new label Y
′
t.

Comparing the widely used 4-way self-supervised tasks,

as demonstrated in [32], the above approach relaxes a cer-

tain invariant constraint during learning the original and

self-supervised tasks simultaneously, which is beneficial to

learning richer features. As shown in our experiments, the

performance of CIL can be improved by this simple method.

3.4. Integrated Objective of PASS

When learning new classes, the feature extractor would

be updated continually. To alleviate the mismatch between

the saved old prototypes and the feature extractor, the well-

known knowledge distillation (KD) [21, 22] is employed

to regularize the feature extractor. Specifically, we restrain

the feature extractor by matching the features of new data

extracted by current model with that of previous model:

Lt,kd = ‖Ft(X
′
t; θt)− Ft−1(X

′
t; θt−1)‖. (7)

Combining the techniques presented above, we reach a total

loss of PASS that comprised of three terms, given as:

Lt,total = Lt,ce + λ ∗ Lt,protoAug + γ ∗ Lt,kd. (8)

Lt,ce = Lt,ce(G(F (X′
t; θt);φt),Y

′
t), and Lt,protoAug =∑t−1

i=1
Lt,ce(G(Fi;φt),Yi). λ and γ are loss weights, and

we use λ = γ = 10 in our experiments.

3.5. Preliminary Experiments

3.5.1 2D Visualization of ProtoAug

To provide an illustration of protoAug, we conduct exper-

iment on MNIST [31] with a 2-dimensional feature space

which is suitable for visualization. SSL is not applied here

since the effect of protoAug is the focus in this experiment.

We start from a Resnet-18 model [19] trained on 4 classes

and the remaining 6 classes are continually added in 3 phases.

We compare our method with finetuning, LwF [34], and

LwF-MC (binary cross entropy based) [43]. As shown in

Fig. 3, the distribution of old classes is dramatically changed
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Figure 3: Visualization of class representations in the feature space when learning MNIST [31] incrementally. The outputted

features are 2-dimensional which is suitable for visualization. Best viewed in color.

Table 1: Results of zero-cost class incremental learning. The model is tested using nearest class mean classifier.

#classes 4 (base) 5 6 7 8 9 Final Average

CIFAR-10

Novel
Baseline — 27.20 20.55 17.40 17.23 15.68 14.80 18.81

+ SSL — 76.40 61.10 46.83 40.80 40.36 37.57 50.50+31.69

All
Baseline 94.55 79.26 68.00 59.65 52.88 48.97 46.46 64.25

+ SSL 95.35 87.26 79.22 70.04 64.05 61.18 58.36 73.63+9.38

#classes 40 (base) 50 60 70 80 90 Final Average

CIFAR-100

Novel
Baseline — 43.50 33.10 30.43 27.45 25.20 23.58 30.54

+ SSL — 55.70 44.85 42.67 38.37 34.70 32.15 41.46+10.92

All
Baseline 71.83 63.60 55.73 50.64 46.38 42.61 39.37 52.93

+ SSL 72.03 64.52 58.37 54.46 50.50 46.48 43.46 55.68+2.74

in finetuning, and there is an obvious overlap of distribution

from different classes, resulting in catastrophic forgetting.

Contrarily, our method can maintain the distribution of old

classes when learning new classes, thus reduces the forget-

ting phenomenon in the course of CIL.

3.5.2 A Closer Look at SSL for CIL

Setup. We train ResNet-18 for classifying CIFAR-10 and

CIFAR-100 [29]. Similar to [33, 39], we first train a classi-

fication model on some base classes. Then a nearest class

mean (NCM) classifier is built on the pre-trained feature

extractor to classify both base and new classes incrementally.

For SSL based model, the based classes are augmented using

the label augmentation method in Section 3.3. We train all

the models for 120 epochs with batch size 64 and Adam [26]

optimizer with 0.001 initial learning rate, and the learning

rate is multiplied by 0.1 after 50 and 100 epochs.

Results. For each learning stage, we report the test accu-

racy on novel classes that appeared so far. And we also

test on both base and novel classes that appeared so far. As

shown in Table 1, the accuracy of novel classes can be signif-

icantly improved with SSL. For instance, SSL based model

achieves 50.50% average incremental task accuracy on novel

classes of CIFAR-10, and surpasses the baseline model by

a large margin of 31.69%. Similarly, on CIFAR-100, SSL

based model outperforms the baseline model by a margin of

10.92%. Those results strongly demonstrate the suitability

and effectiveness of SSL for CIL.

Deep feature space anaysis. An intuitively explanation for

the effectiveness of SSL on the above experiments is that

SSL improves the separation of the distribution of novel

classes. As shown in Fig. 4, the class representations of novel

classes are much more separated with SSL, and the overlap

between base and novel classes is less, comparing with

baseline model. We further anaysis the deep feature space

quantitatively. Specifically, we use average inter-class dis-

tances πinter(F ) = 1

Zinter

∑
yl,yk,l 6=k d(µ(Fyl

), µ(Fyk
)),

and average intra-class distances πintra(F ) =
1

Zintra

∑
yl∈y

∑
fi,fj∈Fyl

,i 6=j d(fi, fj) to measure the distri-

bution of class representations. d(·; ·) is the cosine distance

in our experiment. Fyl
= {fi := fθ(xi)|xi ∈ X, yi = yl}

denotes the set of embedded samples of a class yl. µ(Fyl
)

is their mean embedding. Zintra and Zinter are two

normalization constants.

As shown in Fig. 4, for unseen classes, SSL results in

smaller intra distance on novel classes, which implies that
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Figure 4: (a-b) SSL improves the separation of the distribution of novel classes, and reducing the the overlap between base and

novel classes. (c-b) SSL results in smaller intra distance on novel classes, and high feature space density.

Figure 5: Results of classification accuracy on CIFAR-100, which contains 5, 10 and 20 sequential tasks.

the model learned with SSL generalizes better than base-

line on novel classes. While for training classes, baseline

has more compact feature distributions. This indicates that

representation learning for new class generalization may

be hurt by excessive feature compression. In particular,

Roth et al., [45] proposed a concept of feature space den-

sity: πratio(F ) = πintra(F )/πinter(F ), and found that an

increased feature space density πratio is linked to stronger

generalization under considerable shifts between training

and testing distribution. Fig. 4(d) shows that SSL leads to a

higher feature space density πratio, and the improvement on

generalization is consistent with the observation in [45].

4. Experiments

Datasets. We perform our experiments on CIFAR-100 [29],

TinyImageNet [41] and ImageNet-Subset [10]. The classes

are arranged in a fixed random order. Except for one setting

on CIFAR-100, we mainly train the model on half of classes

for the first task, and equal classes in the rest phases.

Comparison Approaches. We compare our method (PASS)

with non-exemplar based methods such as EWC [28], LwF

[34], LwF-MC [43], LwM [11] and MUC [36]. We also com-

pare with several state-of-the-art exemplar-based approaches:

iCaRL [43], EEIL [6], UCIR [22]. Note that our method is

non-exemplar based since we do not save any old samples,

but to memorize one prototype in the deep feature space

for each class, which is very memory efficient and has no

privacy issues.

Evaluation metrics. We report the standard metrics to

measure the quality of CIL: Accuracy [43] is computed

as the average accuracy of all the classes that have already

been learned. Average forgetting [7] is defined to estimate

the forgetting of previous tasks. The forgetting measure
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Figure 6: Results of classification accuracy on TinyImageNet, which contains 5, 10 and 20 sequential tasks.

f i
k of the i-th task after training k-th task is defined as

f i
k = max

t∈1,...,k−1

(at,i−ak,i), ∀i < k, in which am,n is the ac-

curacy of task n after training task m. The average forgetting

measure Fk is then defined as Fk = 1

k−1

∑k−1

i=1
f i
k.

Implementation details.1 ResNet-18 [19] is used and

trained from scratch in our experiments. We train all the

models with batch size 64 and Adam [26] optimizer with

0.001 initial learning rate. We train all the models for 100

epochs, and the learning rate is multiplied by 0.1 after 45

and 90 epochs. All the experiments are repeated three times

and the average results are reported. We conduct different in-

cremental settings (5, 10 and 20 phases) for both CIFAR-100

and TinyImageNet. For ImageNet-Subset, we use the 10 in-

cremental phases evaluation protocol. After each phase, the

model is evaluated on all the learned classes so far. For the

exemplar-based approaches: iCaRL [43], EEIL [6], UCIR

[22], we use herd selection [43] to select and store 20 sam-

ples per old class, which is a common setting [43, 22].

4.1. Comparative Results

Results are shown in Fig. 5, Fig. 6 and Fig. 7. We ob-

serve that our method outperforms significantly better than

non-exemplar based methods, which confirms that PASS

can effectively address the catastrophic forgetting in CIL

without storing old training samples. Take the results of 10

phases as an example, our method outperforms the best non-

exemplar methods MUC [36] with a gap of 29.3% on CIFAR-

100 and with a gap of 25.2% on TinyImageNet. In addi-

tion, our method outperforms the strong baseline method,

iCaRL-NCM [43], by 3.7% on CIFAR-100 (10 phases), and

achieves comparable accuracy with state-of-the-art exemplar-

based approaches which are based on many saved samples

overall. The observations on ImageNet-Subset are consistent

with those on CIFAR-100 and TinyImageNet.

To compare the effectiveness of alleviating forgetting, we

show the average forgetting results in Table 2. Our method

1Code available at https://github.com/Impression2805/

CVPR21_PASS.

Table 2: Results of average forgetting on CIFAR-100 and

TinyImageNet.

CIFAR-100 TinyImageNet

Method 5 phases 10 phases 20 phases 5 phases 10 phases 20 phases

LwF_MC 44.23 50.47 55.46 54.26 54.37 63.54

MUC 40.28 47.56 52.65 51.46 50.21 58.00

PASS 25.20 30.25 30.61 18.04 23.11 30.55

iCaRL-CNN 42.13 45.69 43.54 36.89 36.70 45.12

iCaRL-NCM 24.90 28.32 35.53 27.15 28.89 37.40

EEIL 23.36 26.65 32.40 25.56 25.91 35.04

UCIR 21.00 25.12 28.65 20.61 22.25 33.74

Figure 7: Results of classification accuracy on ImageNet-

Subset, which contains 10 sequential tasks.

suffers from less forgetting than iCaRL-NCM on CIFAR-

100. The results on TinyImageNet are also conclusive. In

conclusion, PASS outperforms all the non-exemplar based

methods and some exemplar based methods in terms of both

accuracy and average forgetting.

The comparison of the confusion matrix. Fig. 8 shows the

comparison of confusion matrix by finetuning, iCaRL, and

our approach. The diagonal entries represent the correction

predictions and off-diagonal entries represent the misclassi-

fication. Because of the severe imbalance between old and

new classes, finetuning tends to classify the samples into

new classes (strong confusions on the last task), as shown

in Fig. 8(a). PASS is capable to remove most of the bias

and achieves better overall performance without relying on

stored data of old classes.

The comparison of weight in the FC Layer. For the ex-
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Table 3: The effectiveness of each component in our method.

#dataset & classes CIFAR-100 TinyImageNet

Method protoAug SSL 5 phases 10 phases 20 phases 5 phases 10 phases 20 phases

Accuracy

KD % % 14.33 6.04 5.67 7.23 4.70 4.23

KD+SSL % X 17.15 8.46 8.57 9.71 6.53 6.60

KD+protoAug X % 50.19 39.80 38.61 33.11 26.52 20.97

KD+protoAug+SSL X X 55.67 49.03 48.48 41.58 39.28 32.78

Forgetting
KD+protoAug X % 28.72 35.70 40.59 25.62 35.33 43.91

KD+protoAug+SSL X X 25.20 30.25 30.61 18.04 23.12 30.55

predicted classes                                predicted classes                               predicted classes  
   (a) finetuning                                        (b) iCaRL                                             (c) PASS            
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Figure 8: The comparison of confusion matrix of finetuning,

iCaRL and PASS.

periment on CIFAR-100 (5 phases), after the last step, we

calculate the norms of the weight vectors and plot them in

Fig. 9. As shown in Fig. 9(a), by finetuning, the norms of

the weight vectors of new classes are much larger than those

of old classes. As a result, an input image can be easily

predicted to a new class. Moreover, the weight learned by

iCaRL suffers less imbalance problem comparing with fine-

tuning, but the bias still exists in Fig. 9(b). It can be seen

from Fig. 9(c) that our method is capable to remove the bias

of the weight vectors in the FC Layer.

4.2. Ablation Study

The proposed PASS is comprised of three components:

protoAug, SSL, and KD, as shown in Fig. 2. Here we ana-

lyze the effect of isolate individual aspects of the methods.

From the results in Table 3, we can observe that: (1) Only

using KD (as that in LwF) is completely failed in CIL with-

out protoAug and SSL. (2) SSL has a relatively small effect

combining with KD since the imbalance problem of the

classifier is severe. (3) ProtoAug successfully mitigates the

imbalance problem and achieves much better results than

KD, e.g., protoAug improves the performance of KD with

a margin of 32.94% on CIFAR-100 (20 phases). (4) The

performance of protoAug could be significantly improved by

combining with SSL, e.g., SSL improves the performance

of KD+protoAug with a margin of 9.87% on CIFAR-100

(20 phases). Moreover, it can be seen that the effectiveness

of SSL is more obvious with the help of protoAug, which

indicates that SSL and protoAug could benefit from each

other. Particularly, we have experimentally observed that the

performance will drop significantly without KD. As demon-

strated in Section 3.4, KD is critical for the success of PASS.

Figure 9: Norms of the weight vectors in the fully con-

nected (FC) layer after learning all classes incrementally.

Our method can remove the bias and learn a balance weight.

By employing SSL in CIL, the model could learn more

general and transferable features for other tasks (as demon-

strated in Section 3.5.2), which can reduce the feature extrac-

tor bais. Thus, it would be easier to find a model to perform

well on all tasks, which improves both the stability and plas-

ticity of the model. Therefore, we emphasize that the feature

extractor bias should be considered and more future effort

should be put into task-agnostic representation learning for

IL, especially for non-exemplar based CIL.

5. Conclusion

This paper proposes a simple and effective method of

PASS for CIL. PASS is capable to alleviate the catastrophic

forgetting problem in CIL, and achieves significantly bet-

ter classification results on several datasets without stor-

ing exemplar samples for old class or using complex gen-

erative models. In particular, we propose to introduce

self-supervised learning to incremental learning for better

task generalizable features. Extensive experiments demon-

strate that our approach outperforms non-exemplar based

methods by large margins, and achieves comparable perfor-

mance compared to several state-of-the-art exemplar-based

approaches under different settings.
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