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Abstract

Majority of the perception methods in robotics require

depth information provided by RGB-D cameras. However,

standard 3D sensors fail to capture depth of transparent

objects due to refraction and absorption of light. In this

paper, we introduce a new approach for depth completion

of transparent objects from a single RGB-D image. Key

to our approach is a local implicit neural representation

built on ray-voxel pairs that allows our method to gener-

alize to unseen objects and achieve fast inference speed.

Based on this representation, we present a novel frame-

work that can complete missing depth given noisy RGB-

D input. We further improve the depth estimation itera-

tively using a self-correcting refinement model. To train

the whole pipeline, we build a large scale synthetic dataset

with transparent objects. Experiments demonstrate that our

method performs significantly better than the current state-

of-the-art methods on both synthetic and real world data.

In addition, our approach improves the inference speed

by a factor of 20 compared to the previous best method,

ClearGrasp [43]. Code will be released at https:

//research.nvidia.com/publication/2021-

03_RGB-D-Local-Implicit.

1. Introduction

Depth data captured from RGB-D cameras has been

widely used in many applications such as augmented re-

ality and robot manipulation. Despite their popularity,

commodity-level depth sensors, such as structured-light

cameras and time-of-flight cameras, fail to produce correct

depth for transparent objects due to the lack of light reflec-

tion. As a result, many algorithms utilizing RGB-D data

cannot be directly applied to recognize transparent objects

which are very common in household scenarios.

Previous works on estimating geometry of transparent

objects are often studied under controlled settings [47, 51].

Recently, Li et al. [26] proposed a physically-based neu-

1Work done while author was an intern at NVIDIA.

Figure 1. Our method can predict the depth of unseen transparent

objects from a noisy RGB-D image. We back-project the depth

map into the point cloud and render it in a novel viewpoint to better

visualize the 3D shape. Zoom in to see details.

ral network to reconstruct 3D shape of transparent objects

from multi-view images. Although their method is less re-

stricted compared to previous ones, it still requires the envi-

ronment map and the refractive index of transparent objects.

ClearGrasp [43] achieves impressive results on depth com-

pletion of transparent objects. It first predicts masks, oc-

clusion boundaries and surface normals from RGB images

using deep networks, and then optimizes initial depth based

on the network predictions. However, the optimization re-

quires transparent objects to have contact edges with other

non-transparent objects. Otherwise, the depth in transpar-

ent area becomes undetermined and can be assigned ran-

dom value. In addition, it can not be deployed in real time

applications due to the expensive optimization process.

In this paper, to overcome the limitations of existing

works, we present a fast end-to-end framework for depth

completion of transparent objects from a single RGB-D im-

age. The core to our approach is a Local Implicit Depth

Function (LIDF) defined on ray-voxel pairs consisting of
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camera rays and their intersecting voxels. The motivations

for LIDF are: 1) The depth of a transparent object can be

inferred from its color and the depth of its non-transparent

neighborhood. In particular, color can provide useful vi-

sual cues for the 3D shape and curvature while local depth

helps to reason about the spatial arrangement and location

of transparent objects. 2) Directly regressing the complete

depth map using a deep network can easily overfit to the ob-

jects and scenes in the training data. By learning at the local

scale (a voxel in our case) instead of the whole scene, LIDF

can generalize to unseen objects because different objects

may share similar local structures. 3) Voxel grids provide

a natural partition of the 3D space. By defining implicit

function on ray-voxel pairs, we can significantly reduce the

inference time as the model only needs to consider occu-

pied voxels intersected by the camera ray. Based on these

motivations, we present a model to estimate the depth of a

pixel by learning the relationship between the camera ray

and its intersecting voxels given the color and local depth

information. To further utilize the geometry of transparent

object itself, we propose a depth refinement model to up-

date the prediction iteratively by combining the input RGB,

input depth points and the predicted depth from LIDF. To

train the whole pipeline, we create a large scale synthetic

dataset, Omiverse Object dataset, using the NVIDIA Omni-

verse platform [1]. Our dataset provides over 60,000 images

including both transparent and opaque objects in different

scenes. The dataset is generated with diverse object mod-

els and poses, lighting conditions, camera viewpoints and

background textures to close the sim-to-real gap. Experi-

ments show that training on the Omniverse Object dataset

can boost the performance for both our approach and com-

peting methods in real-world testing cases.

Our approach is inspired by recent advances in neural

radience field [34, 44, 27]. NeRF [34] can learn a con-

tinuous function of the 3D geometry and appearance of a

scene, thus achieving accurate reconstruction and render-

ing results. However, NeRF has slow inference speed due

to inefficient 3D points sampling. Our approach tackles

this problem by querying intersecting voxels instead of 3D

points along the ray. NSVF [27] also utilizes a sparse voxel

grid to reduce the inference time, but it still needs to sam-

ple 3D points inside the voxel while our method directly

learns the offset of a ray-voxel pair to obtain the possible

terminating 3D location of the ray. Experiments demon-

strate that learning offsets can produce better depth than

sampling 3D points based on heuristic strategies. In ad-

dition, NeRF-based methods needs to train a network for

every new scene to model the complex geometry and ap-

pearance whereas our method generalizes to unseen objects

and scenes in depth completion of transparent objects.

Our contributions are summarized as follows: 1) We pro-

pose LIDF, a novel implicit representation defined on ray-

voxel pairs, leading to fast inference speed and good gener-

ality. 2) We present a two-stage system, including networks

to learn LIDF and a self-correcting refinement model, for

depth completion of transparent objects. 3) We build a large

scale synthetic dataset proved to be useful to transparent ob-

jects learning. 4) Our full pipeline is evaluated qualitatively

and quantitatively, and outperform the current state-of-the-

art in terms of accuracy and speed.

2. Related Work

Depth estimation. Depth estimation can be classified into

three categories based on the input. Several methods have

been proposed to directly regress the depth map from the

color image using convolutional neural networks [12, 41,

25, 7, 14, 15, 17]. Most of them are trained on large

scale datasets generated from RGB-D cameras, thus they

can only reproduce the raw depth scan. Our method, on

the contrary, focuses on the depth estimation for transpar-

ent objects where depth sensor typically fails. Another

line of related work explores the task of depth comple-

tion given RGB images and sparse sets of depth measure-

ments [31, 8, 40, 50, 10, 35]. These works improve the

depth estimation over color-only methods, but they still

produce low quality results because of limited informa-

tion provided by sparse depth. Our method falls into the

third category which tries to complete depth maps given

noisy RGB-D images. Barron and Malik [3] propose a

joint optimization for intrinsic images. Firman et al. [13]

predict unobserved voxels from a single depth image us-

ing the voxlet representation. Matsuo and Aoki [32] recon-

struct depths by ray-tracing to estimated local tangents. Re-

cent works [53, 43] estimate surface normals and occlusion

boundaries only from color images using deep networks and

solve a global optimization based on those predictions as

well as observed depths. The optimization is very slow and

produces bad results if the network predictions are not ac-

curate. We address these limitations by learning a implicit

function using color and local depth jointly. Experiment

shows that our method can achieve better results and 20×
speedup compared to [43].

Transparent objects. Transparent objects have been stud-

ied in various computer vision tasks, including object pose

estimation [24, 30, 29, 38, 28], 3D shape reconstruction [2,

18, 39, 26, 43] and segmentation [21]. However, most of

these works assume known background patterns [18, 39],

known object 3D models [24, 30, 38], or multi view/stereo

input [28, 26]. Our approach does not require any priors and

can estimate the depth of transparent objects from a single

view RGB-D image. Sajjan et al. [43] is the closest work

to ours. However, they pretrain their networks on out-of-

domain real datasets while our method is trained purely on

synthetic data but achieves better performance.
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Figure 2. Pipeline overview. Our method takes as input RGB-D images with missing depth for transparent objects, and predicts the full

depth map. We first generate ray-voxel pairs by finding all occupied voxels intersected by a ray. Then we learn a local implicit function

for each pair to estimate the terminating probability and position of the ray inside the voxel. The prediction of all pairs along the ray are

accumulated by our ray pooling module to get the initial depth prediction. Finally, we improve the result by iterative depth refinement.

Implicit function learning. Our method takes inspiration

from the implicit neural models [9, 33, 36, 16, 42, 49, 11],

which are not restricted by topology and can represent the

3D surface continuously. Most of these methods [9, 33, 36]

can not scale to scene level as they only use a single latent

vector to encode the shape. Voxel-based implicit represen-

tations [5, 20, 37] address this limitation by learning local

shape priors. However, they require coarse voxel grids or

sparse point clouds as input, which already provide some

information about 3D shapes. Our task is more challenging

as the point cloud of transparent objects is totally missing.

Recently, Mildenhall et al. [34] propose to represent

scenes as neural radiance fields, achieving impressive re-

sults on novel view synthesis. However, their method needs

to be retrained for every new scene and takes a long time

to render one image. Schwarz et al. [44] solves the first

drawback by learning a generative radiance field, but their

results are limited to single object or human face. Liu et

al. [27] tackles the second problem by introducing sparse

voxel grids, but they still need to sample points based on

heuristic strategies while our method learns to estimate the

possible terminating position for ray-voxel pairs.

3. Method

Figure 2 provides the overview of our proposed end-to-

end system for depth completion of transparent objects. Our

approach takes as input a RGB image I ∈ R
H×W×3, an

incomplete depth image D ∈ R
H×W and camera intrinsics

K ∈ R
3×3, and predicts the full depth map D̂ ∈ R

H×W ,

where H and W are height and width of the input image.

Our method consists of two stages: The first stage learns

LIDF defined on ray-voxel pairs to represent the local ge-

ometry of the scene, which is done in three steps. First, ray-

voxel pairs are generated by marching a camera ray through

the pixel to find occupied voxels intersected by the ray (Sec-

tion 3.1). Then networks are trained end-to-end to learn the

terminating probability and position of the ray inside the

voxel given RGB embedding, voxel embedding and ray em-

bedding (Section 3.2). Finally, predictions of all pairs along

the ray are accumulated by a ray pooling module to get the

depth estimation (Section 3.3). Voxel embedding in the first

stage does not encode the geometry of transpaernt objects

due to the missing depth. The second stage of our method

(Section 3.4) presents a refinement model to solve this prob-

lem. The refinement model first recomputes the voxel and

ray embeddings based on input and predicted depth points.

After that, it refines the depth estimation by combining the

new voxel and ray embeddings with the original RGB em-

bedding. The formulation of the refinement model allows

for iteratively applying fine adjustments that preserve com-

mon 3D structures such as shapes of the objects, how the

objects are lying on the table, and objects following the di-

rection of gravity. Experiments demonstrate the generaliza-

tion power of the depth refinement model on unseen objects

in the real world.

3.1. Generating Ray­voxel Pairs

To predict the missing depth of a pixel, we first need to

find all the occupied voxels intersected by its camera ray.

Figure 3 provides different steps for the ray-voxel pair gen-

eration. We start by dividing a fixed workspace into an axis-

aligned voxel grid V in camera coordinates, where our sys-

tem only completes the depth for any object inside. After

that, the input depth map D is back-projected into an “or-

ganized” point cloud P ∈ R
H×W×3 using the camera in-

trinsics K. We filter out points with zero depth to get the

valid point cloud P valid ⊂ P . A voxel is considered as oc-

cupied if it has at least one valid depth point. Based on this

definition, the set of occupied voxels Vocc can be computed

by doing a boundary test between P valid and all voxel cells

v ∈ V. Finally, we shoot a camera ray ri through the i-th

pixel Ii and apply the ray-AABB intersection test [22] be-

tween ri and V
occ using a customized CUDA kernel which

allows for real time computation.

The generated ray-voxel pairs (Figure 3 (d)) are denoted

by Φij = (ri, v
occ
j , din

ij , d
out
ij ), where ri is the ray direction

for the i-th pixel Ii, v
occ
j is the voxel intersected by the ray

ri with index j in V
occ, din

ij and dout
ij are the position of the

entering and leaving intersection point respectively.
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Figure 3. Ray-voxel pair generation. (a) Predefined voxel grid.

(b) Occupied voxels. (c) Intersecting voxels along the ray. (d)

Variables defined for the ray-voxel pair.

3.2. Learning LIDF for Ray­voxel Pairs

LIDF is defined on ray-voxel pairs to reason about the re-

lationship between camera rays and their intersecting vox-

els. Specifically, we want to estimate the terminating prob-

ability and position of the camera ray inside the intersect-

ing voxel given the following inputs: 1) RGB embedding

corresponding to the pixel of the camera ray; 2) Voxel em-

bedding computed from valid points inside the intersecting

voxel; 3) Ray embedding which encodes the high frequency

information of the ray direction and ray-voxel intersection

points. As illustrated in Figure 4, the learning process of

LIDF for the ray-voxel pair Φij can be formulated as:

pend
ij = Fprob(Hij) (1)

dij = din
ij + δij · ri, δij = Fpos(Hij) (2)

Hij = H
rgb
i ⊕Hvox

j ⊕ γ(ri)⊕ γ(dinij )⊕ γ(dout
ij ), (3)

where pend
ij is the probability of the ray ri terminating in the

voxel vocc
j ; dij is the terminating position inside vocc

j for ri;

δij is the distance from din
ij to dij along the ray; Hij is the

input feature embedding for Φij ; H
rgb
i is the RGB embed-

ding for pixel Ii; H
vox
j is the voxel embedding for vocc

j ; γ(·)
is the high frequency positional encoding function [34]; ⊕

is the concatenation operator for feature vectors. Fprob is

parametrized as a MLP while Fpos is parametrized as a sep-

arate MLP with iterative error feedback [4].

RGB Embedding. The RGB embedding Hrgb encodes the

color information of all pixels. Given the input image I,

we first apply ResNet34-8s network [48] Ψrgb to get a dense

feature map Ψrgb(I) ∈ R
H×W×Cr , where H is the image

height, W is the image width and Cr is the dimension of

the dense feature map. To compute the RGB Embedding

Figure 4. LIDF for each ray-voxel pair. Our proposed implicit

function queries the termination probability and position given the

RGB, voxel and ray embeddings.

H
rgb
i for the i-th pixel Ii, we use ROIAlign [19] to pool

features from a local patch of Ψrgb(I) centered at Ii. We

set Cr = 32 in our experiments. For ROIAlign, the size of

input ROI is 8×8 and the size of output feature map is 2×2.

We directly flatten the output feature map of ROIAlign to

get the final RGB embedding.

Voxel Embedding. The voxel embedding Hvox encodes the

geometry information for occupied voxels V
occ. Inspired

by [52], we propose a two stage voxel-based PointNet en-

coder, which can better fuse the global and local geome-

try inside a voxel. Unlike [52] who applies maxpooling

to all points to get a global embedding, our network com-

putes per-voxel embeddings by maxpooling points inside

each voxel. Please see supplementary for details.

3.3. Ray Pooling

Given the predicted terminating probability and position

for each ray-voxel pair, we need to estimate the depth of ray

ri. We achieve this by applying a pooling operation to all

pairs containing ri. There are two natural choices for the

pooling: argmax and weighted sum. The argmax operator

computes the depth of ri as the depth estimation of the ray-

voxel pair with the maximal ray terminating probability:

di = dij′ , j
′ = argmax

j:vocc
j

∈Vocc
ri

pend
ij , (4)

where di is the predicted terminating position of ray ri; j
′

is the index of the occupied voxel that has the largest termi-

nating probability; Vocc
ri

represents all the occupied voxels

intersected by ray ri.

The weighted sum operator computes the depth of ri
as the sum of depth estimation of all pairs along the ray

weighted by their terminating probabilities:

di =
∑

j:vocc
j

∈Vocc
ri

dijp
end
ij . (5)
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Figure 5. Examples from our Omniverse Object Dataset.

Our experiments, in Section 4.2, show that argmax pool-

ing leads to better accuracy in depth prediction because

weighted sum can introduce noise brought by voxels that

are far away from the ground truth even if their terminating

probabilities are low.

3.4. Depth Refinement Model

Since the real depth scan around transparent objects can

be very noisy or totally missing depth values, the voxel

embedding in those areas can encode neither the geometry

of transparent objects nor the spatial arrangement between

transparent objects and non-transparent ones. To overcome

this issue, we propose a self-correcting model to refine the

depth estimation progressively. For each iteration, the re-

finement model recomputes the voxel embedding using in-

put valid points as well as predicted missing points from last

iteration, and estimates the correction offset. The forward

pass for the k-th iteration (k ≥ 1) can be formulated as:

d̂i[k] = d̂i[k − 1] + δ̂i[k] · ri (6)

δ̂i[k] = F̂pos(Ĥi[k]) (7)

Ĥi[k] = H
rgb
i ⊕ Ĥvox

jk−1
[k]⊕ γ(ri)⊕ γ(d̂i[k − 1]), (8)

where d̂i[k] is the terminating position of ray ri under k-th

iteration and we set d̂i[0] = di; δ̂i[k] is the offset along the

ray from d̂i[k − 1] to d̂i[k]; Ĥi[k] is the input feature em-

bedding for ray ri under k-th iteration; jk−1 is the index for

the occupied voxel containing position d̂i[k − 1]; Ĥvox
jk−1

[k]
is the voxel embedding under k-th iteration for voxel vocc

jk−1
.

We compute Ĥvox
jk−1

[k] by sending both input valid points

and predicted missing points inside vocc
jk−1

into our proposed

PointNet encoder. F̂pos is parametrized as a MLP with it-

erative error feedback. It is worth noting that all networks

in the refinement model do not share weights with the first

stage networks. Refinement networks can be applied iter-

atively to improve the quality of the depth. We apply re-

finement networks for 2 iterations and refining more than 2

iterations results in marginal improvement of depth quality.

3.5. Loss Functions

Our system is trained using the following loss:

L = ωposLpos + ωprobLprob + ωsnLsn, (9)

where Lpos is the L1 loss between the predicted and

groundtruth depth; Lprob is the cross entropy loss for ter-

minating probabilities of all intersecting voxels along the

ray; Lsn is the cosine distance of surface normals computed

from predicted and groundtruth point cloud respectively,

which can regularize the network to learn meaningful object

shapes; ωpos, ωprob and ωsn are weights for different losses.

3.6. Implementation Details

We set image resolution to 320× 240 in all experiments.

To simulate the noise pattern of real depth scans on our syn-

thetic training data, we remove all depth values for transpar-

ent objects, part of the depth values for opaque objects, and

create some random holes in the depth map for background.

We also augment the color input by adding pixel noise, mo-

tion blur and random noise in HSV space. For training,

our method only predicts depth for corrupted pixels men-

tioned above. For testing, depth values of all pixels are es-

timated so that our method does not rely on the segmen-

tation of transparent objects. Our two stage networks are

trained separately. The first stage networks are trained for

60 epochs using Adam optimizer [23] with a fixed learning

rate of 0.001. After that, the first stage networks are frozen

and we train the refinement networks for another 60 epochs

using Adam optimizer. The first 30 epochs are trained with

learning rate 0.001 using the proposed loss function. The

later 30 epochs are trained with learning rate 0.0001 using

hard negative mining, where only top 10 percent of pixels

with largest errors are considered. We set ωpos = 100 and

ωsn = 10 for the first stage and first 30 epochs of the sec-

ond stage. For the later 30 epochs of second stage, we set

ωpos = 20 and ωsn = 2. ωprob is set to 0.5 for the first stage

and 0 for the depth refinement model.

4. Experiments

Datasets Our full pipeline is trained on the ClearGrasp

dataset [43] and a new dataset we generated using the Omni-

verse Platform [1], which we call Omniverse Object dataset.

The dataset provides various supervisions for transparent

and opaque objects in cluterred scenes. Figure 5 visual-

izes some examples of the dataset. 3D object models in

Omniverse Object dataset are collected from ClearGrasp

and ShapeNet [6]. To get natural poses of objects, we use

NVIDIA PhysX engine to simulate objects falling to the

ground. Then we randomly select some objects and set

their materials to the glass. We also augment the data by

changing textures for the ground and opaque objects, light-

ing conditions and camera views. See supplementary for
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more details about Omniverse Object dataset. The evalua-

tion is done on the ClearGrasp dataset [43]. It has 4 types

of different testing data: Synthetic images of 5 training

objects (Syn-known); Synthetic images of 4 novel objects

(Syn-novel); Real world images of 5 training objects (Real-

known); Real world images of 5 novel objects (Real-novel),

3 of them are not present in synthetic data.

Metrics We closely follow the evaluation protocal of [43]

for the depth estimation. The prediction and groundtruth are

first resized to 144×256 resolution, then we compute errors

in the transparent objects area using the following metrics:

Root Mean Squared Error (RMSE):
√

1

|D̂|

∑

d∈D̂ ||d− d∗||2

Absolute Relative Difference (REL): 1

|D̂|

∑

d∈D̂ |d− d∗|/d∗

Mean Absolute Error (MAE): 1

|D̂|

∑

d∈D̂ |d− d∗|

Threshold: % of di satisfying max( di

d∗
i
,
d
∗

i

di
) < δ

The first 3 metrics are computed in meters. For the

threshold, δ is set to 1.05, 1.10 and 1.25.

4.1. Comparison to State­of­the­art Methods

We compare our approach to several state-of-the-art

methods in Table 1. For fair comparison, we evaluate all

related works using their released checkpoints (denoted by

method name) as well as retraining on our data (denoted

by method name with subscript ours. All baselines are

trained on both datasets together which is the same setting

as our proposed method). RGBD-FCNours is a strong base-

line proposed by ourselves. It directly regresses depth maps

using fully convolutional networks from RGB-D images.

We use Resnet34-8s [48] as the network architecture and

train the network on our data. NLSPN [35] is the state-of-

the-art method for depth completion on NYUV2 [45] and

KITTI [46] dataset. Cleargrasp [43] is the state-of-the-art

method for depth completion of transparent objects. For

our approach, we use the best model: LIDF plus the depth

refinement model. Our method achieves the best result on

all datasets even when baseline methods are trained on the

same data. It also shows that training on Omniverse Ob-

ject dataset can boost the performance of baseline methods.

In Figure 6, we provide qualitative comparison by render-

ing point cloud in a novel view. Our approach can generate

more meaningful depth than baseline methods.

Inference speed is an important factor for deploying

the model in real applications. We compare the inference

time of our method to the best performing baseline Clear-

Grasp [43]. While our method provides an end-to-end so-

lution to complete the depth map of the scene, ClearGrasp

uses a two-stage approach where the first stage uses CNN

to predict some intermediate observations and the second

stage solves an expensive optimization to recover the miss-

ing depths. In order to compare the runtime fairly, we run

both methods on a machine equipped with a single P100

GPU and compute the average time over the whole testing

set. Our method takes 0.09 second for one image while

ClearGrasp needs to spend 1.82 second, showing that our

method is 20x faster.

Methods RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Cleargrasp Syn-known

RGBD-FCNours 0.028 0.039 0.021 76.53 91.82 99.00

NLSPN [35] 0.136 0.231 0.113 19.02 35.95 70.43

NLSPNours [35] 0.026 0.041 0.021 74.89 89.95 98.59

CG [43] 0.041 0.055 0.031 69.43 89.17 96.74

CGours [43] 0.034 0.045 0.026 73.53 92.68 98.25

Ours 0.012 0.017 0.009 94.79 98.52 99.67

Cleargrasp Syn-novel

RGBD-FCNours 0.033 0.058 0.028 52.40 85.64 98.94

NLSPN [35] 0.132 0.239 0.106 16.25 32.13 64.78

NLSPNours [35] 0.029 0.049 0.024 64.83 88.20 98.57

CG [43] 0.044 0.074 0.038 41.37 79.20 97.29

CGours [43] 0.037 0.062 0.032 50.27 84.00 98.39

Ours 0.028 0.045 0.023 68.62 89.10 99.20

Cleargrasp Real-known

RGBD-FCNours 0.054 0.087 0.048 36.32 67.11 96.26

NLSPN [35] 0.149 0.228 0.127 14.04 26.67 54.32

NLSPNours [35] 0.056 0.086 0.048 40.60 67.68 96.25

CG [43] 0.039 0.051 0.029 72.62 86.96 95.58

CGours [43] 0.032 0.042 0.024 74.63 90.69 98.33

Ours 0.028 0.033 0.020 82.37 92.98 98.63

Cleargrasp Real-novel

RGBD-FCNours 0.042 0.070 0.037 42.45 75.68 99.02

NLSPN [35] 0.145 0.240 0.123 13.77 25.81 51.59

NLSPNours [35] 0.036 0.059 0.030 51.97 84.82 99.52

CG [43] 0.034 0.045 0.025 76.72 91.00 97.63

CGours [43] 0.027 0.039 0.022 79.5 93.00 99.28

Ours 0.025 0.036 0.020 76.21 94.01 99.35

Table 1. Quantitative Comparison to state-of-the-art methods. ↓
means lower is better, ↑ means higher is better. Please refer to the

text for more details.

4.2. Ablation Studies

In this section, we first evaluate the effect of the depth

refinement model. After that, we compare several configu-

rations for our first stage networks. To focus on the general-

ization ability, we only report quantitative results on Clear-

Grasp Real-novel dataset. Please refer to the supplementary

for results on other testing data.

Depth refinement model. To demonstrate the effectiveness

of the depth refinement model, we run two experiments with

and without refinement. Table 2 shows that adding depth re-

finement can boost the performance on real unseen objects.

In Figure 7, we can see that refinement model can correct

the tilted error from the non-refinement prediction.

Input Modalities. Our method uses combination of RGB

and depth information to complete the depth map. To eval-

uate the contribution of each input modality, we retrained
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Figure 6. Qualitative comparison to state-of-the-art methods. For all the baselines, we provide visualizations of the version retrained on

our data for fair comparison. The point clouds are colored by surface normal and rendered in a novel viewpoint to better visualize the 3D

shape. Red boxes in the groundtruth highlight areas where our method performs much better than all baselines. Zoom in to see details.

Refinement RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

× 0.028 0.043 0.023 65.17 92.23 99.30

X 0.025 0.036 0.020 76.21 94.01 99.35

Table 2. Depth refinement model. × denotes prediction from first

stage while Xdenotes prediction from refinement model.

RGB Depth RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

X X 0.028 0.043 0.023 65.17 92.23 99.30

X 0.052 0.084 0.043 39.14 66.49 97.03

X 0.062 0.096 0.054 35.02 55.98 93.69

Table 3. Ablation studies for effect of different modalities

the first stage model using only one of modalities. Table 3

shows how much each modality contributes to the accuracy

of the predicted depth. RGB alone becomes similar to depth

estimation from single image and it cannot predict the depth

accurately. In addition, depth alone is not able to predict

depth for transparent objects well because transparent ob-

jects are not observed in depth and without RGB informa-

tion the model is agnostic of transparent objects.

Ray Info Pos. Enc # Vox RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

X X 83 0.028 0.043 0.023 65.17 92.23 99.30

N/A 83 0.050 0.064 0.035 57.88 80.29 95.87

X 83 0.032 0.050 0.026 60.96 83.86 99.21

X X 43 0.030 0.046 0.025 64.00 88.96 99.66

X X 163 0.038 0.058 0.031 56.78 81.49 96.21

Table 4. Ablation Study for different design choices such as in-

cluding ray information in the embedding, applying positional en-

coding, and the number of voxels on the accuracy

Ray Information. To further highlight the effectiveness of

our ray-voxel formulation, we compared our method with

the variation where RGB embedding and voxel embedding

are concatenated with each other and there is no informa-

tion about the ray (ray-voxel intersection points and ray di-

rection) provided to the model. Table 4 shows that ray in-

formation provides crucial guidance to the model to predict

the depth effectively.

Positional encoding. Positional encoding was shown to be

quite important in [34] to capture high frequency details.

We also conducted an experiment by disabling the posi-

tional encoding. Table 4 shows that positional encoding is

making significant changes in δ1.05 and δ1.10 which reflect

the ability of the model to capture fine details.

Number of Voxels. We explore the sensitivity of our

method to the number of voxels. Smaller number of vox-

els makes ray termination classification easier but regres-

sion for the offset more challenging while larger number of

voxels leads to the opposite. Table 4 shows that if we make

the number of voxels too large the performance drops more

significantly compared to the smaller number of voxels.

Training Data. We analyze the effects of training data in

Table 5. We find training our method purely on ClearGrasp

or Omniverse leads to similar results, but training on both

datasets can improve the performance a lot. This indicates

that Omniverse dataset can be a good complementary to
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Figure 7. Examples of the depth refinement model. The point clouds (column 2-4) are colored by surface normal and rendered in a novel

viewpoint to better visualize the 3D shape. The red box in the Groundtruth highlights the interest area. The last column visualizes the

overlap of point clouds for non-refinement (red), refinement (green) and groundtruth (blue). Please zoom in to see details.

Data RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

CG+Omni 0.028 0.043 0.023 65.17 92.23 99.30

Omni 0.037 0.057 0.030 52.82 85.16 99.43

CG 0.038 0.057 0.031 58.95 80.13 96.87

Table 5. Quantitative effect of training data on the generalization

to real novel objects.

ClearGrasp for transparent objects learning.

Ray Pooling. Table 6 provides the comparison for two

types of pooling operators described in section 3.3. The

argmax operator performs better than weighted sum oper-

ator on real-novel objects. We argue it is mainly because

weighted sum operator suffers from the noise introduced by

voxels far away from the ground truth. Figure 8 provides

the accuracy histogram of the terminating voxel classifica-

tion for the argmax operator. We can see that 84.77% of

pixels are correctly classified and 97.71% of pixels are clas-

sified within ±1 voxel. We further compute the distance

from the ground truth to the misclassfied ±1 voxels. The

mean distance from the ground truth position to the leaving

(entering) voxel position along the ray for −1 (+1) voxel

is 0.064 (0.048) meter, indicating that groundtruth is very

close to the misclassified −1 (+1) voxel. This implies that

erroneous ending voxel classification will not hurt the per-

formance much for the argmax operator.

Ray Pooling RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Argmax 0.028 0.043 0.023 65.17 92.23 99.30

WeightedSum 0.032 0.051 0.027 59.31 84.25 98.34

Table 6. Ablation study for different ray pooling strategies.

Candidate points selection. To get the depth of the camera

ray, our method learns the offset inside each voxel and apply

argmax ray pooling while NeRF [34] tries to densely sample

points and apply volume rendering equation. We slightly

modify NeRF by sampling points only inside intersecting

voxels. Table 7 shows that learning the position of candidate

points is better than heuristic sampling strategy.

Figure 8. Distribution of the terminating voxel classification. Ver-

tical axis represents the offset from the groundtruth to the pre-

dicted terminating voxel along the ray. For example, +1(-1) rep-

resents the predicted terminating voxel is 1 voxel behind (before)

the groundtruth along the ray. Horizontal axis represents the per-

centage of pixels falls into that category.

Candidates RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Learned offset 0.028 0.043 0.023 65.17 92.23 99.30

Sample points 0.038 0.058 0.031 54.09 79.48 98.28

Table 7. Ablation study for candidate points selection.

5. Conclusion

We have presented a novel framework for depth comple-

tion of transparent objects. Our method consists of a lo-

cal implicit depth function defined on ray-voxel pairs and

an iterative depth refinement model. We also introduce a

large scale synthetic dataset for transparent objects learning,

which can boost the performance for both our approach and

other competing methods. Our pipeline is only trained on

synthetic datasets but can generalize well to real world sce-

narios. We thoroughly evaluated our method compared to

prior art and ablation baselines. Both quantitative and qual-

itative results demonstrate substantial improvements over

the state-of-the-art in terms of accuracy and speed.
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