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Abstract

Few-shot object detection is an imperative and long-

lasting problem due to the inherent long-tail distribution

of real-world data. Its performance is largely affected by

the data scarcity of novel classes. But the semantic rela-

tion between the novel classes and the base classes is con-

stant regardless of the data availability. In this work, we

investigate utilizing this semantic relation together with the

visual information and introduce explicit relation reason-

ing into the learning of novel object detection. Specifically,

we represent each class concept by a semantic embedding

learned from a large corpus of text. The detector is trained

to project the image representations of objects into this em-

bedding space. We also identify the problems of trivially us-

ing the raw embeddings with a heuristic knowledge graph

and propose to augment the embeddings with a dynamic

relation graph. As a result, our few-shot detector, termed

SRR-FSD, is robust and stable to the variation of shots of

novel objects. Experiments show that SRR-FSD can achieve

competitive results at higher shots, and more importantly, a

significantly better performance given both lower explicit

and implicit shots. The benchmark protocol with implicit

shots removed from the pretrained classification dataset can

serve as a more realistic setting for future research.

1. Introduction

Deep learning algorithms usually require a large amount

of annotated data to achieve superior performance. To ac-

quire enough annotated data, one common way is by col-

lecting abundant samples from the real world and paying

annotators to generate ground-truth labels. However, even

if all the data samples are well annotated based on our re-

quirements, we still face the problem of few-shot learning.

Because long-tail distribution is an inherent characteristic

of the real world, there always exist some rare cases that

have just a few samples available, such as rare animals, un-

common road conditions. In other words, we are unable

to alleviate the situation of scarce cases by simply spend-

ing more money on annotation even big data is accessible.
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Figure 1. FSOD performance (mAP50) on VOC [13] Novel Set

1 at different shot numbers. Solid line (original) means the pre-

trained model used for initializing the detector backbone is trained

on the original ImageNet [10]. Dashed line (rm-nov) means

classes in Novel Set 1 are removed from the ImageNet for the

pretrained backbone model. Our SRR-FSD is more stable to the

variation of explicit shots (x-axis) and implicit shots (original vs.

rm-nov).

Therefore, the study of few-shot learning is an imperative

and long-lasting task.

Recently, efforts have been put into the study of few-shot

object detection (FSOD) [5, 20, 11, 19, 44, 41, 14, 46, 39,

42, 43]. In FSOD, there are base classes in which suffi-

cient objects are annotated with bounding boxes and novel

classes in which very few labeled objects are available. The

novel class set does not share common classes with the base

class set. The few-shot detectors are expected to learn from

limited data in novel classes with the aid of abundant data

in base classes and to be able to detect all novel objects

in a held-out testing set. To achieve this, most recent few-

shot detection methods adopt the ideas from meta-learning

and metric learning for few-shot recognition and apply them

to conventional detection frameworks, e.g. Faster R-CNN

[35], YOLO [34].

Although recent FSOD methods have improved the base-
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Figure 2. Key insight: the semantic relation between base and

novel classes is constant regardless of the data availability of novel

classes, which can aid the learning together with visual informa-

tion.

line considerably, data scarcity is still a bottleneck that hurts

the detector’s generalization from a few samples. In other

words, the performance is very sensitive to the number of

both explicit and implicit shots and drops drastically as data

becomes limited. The explicit shots refer to the available

labeled objects from the novel classes. For example, the 1-

shot performance of some FSOD methods is less than half

of the 5-shot or 10-shot performance, as shown in Figure

1. In terms of implicit shots, initializing the backbone net-

work with a model pretrained on a large-scale image clas-

sification dataset is a common practice for training an ob-

ject detector. However, the classification dataset contains

many implicit shots of object classes overlapped with the

novel classes. So the detector can have early access to

novel classes and encode their knowledge in the parame-

ters of the backbone. Removing those implicit shots from

the pretrained dataset also has a negative impact on the per-

formance as shown in Figure 1. The variation of explicit

and implicit shots could potentially lead to system failure

when dealing with extreme cases in the real world.

We believe the reason for shot sensitivity is due to exclu-

sive dependence on the visual information. Novel objects

are learned through images only and the learning is inde-

pendent between classes. As a result, visual information

becomes limited as image data becomes scarce. However,

one thing remains constant regardless of the availability of

visual information, i.e. the semantic relation between base

and novel classes. For example in Figure 2, if we have the

prior knowledge that the novel class “bicycle” looks similar

to “motorbike”, can have interaction with “person”, and can

carry a “bottle”, it would be easier to learn the concept “bi-

cycle” than solely using a few images. Such explicit relation

reasoning is even more crucial when visual information is

hard to access [40].

So how can we introduce semantic relation to few-shot

detection? In natural language processing, semantic con-

cepts are represented by word embeddings [27, 31] from

language models, which have been used in zero-shot learn-

ing methods [40, 1]. And explicit relationships are repre-

sented by knowledge graphs [28, 4], which are adopted by

some zero-shot or few-shot recognition algorithms [40, 30].

However, these techniques are rarely explored in the FSOD

task. Also, directly applying them to few-shot detectors

leads to non-trivial practical problems, i.e. the domain gap

between vision and language, and the heuristic definition of

knowledge graph for classes in FSOD datasets (see Section

3.2 and 3.3 for details).

In this work, we explore the semantic relation for FSOD.

We propose a Semantic Relation Reasoning Few-Shot De-

tector (SRR-FSD), which learns novel objects from both the

visual information and the semantic relation in an end-to-

end style. Specifically, we construct a semantic space us-

ing the word embeddings. Guided by the word embeddings

of the classes, the detector is trained to project the objects

from the visual space to the semantic space and to align their

image representations with the corresponding class embed-

dings. To address the aforementioned problems, we pro-

pose to learn a dynamic relation graph driven by the image

data instead of pre-defining one based on heuristics. Then

the learned graph is used to perform relation reasoning and

augment the raw embeddings for reduced domain gap.

With the help of the semantic relation reasoning, our

SRR-FSD demonstrates the shot-stable property in two as-

pects, see the red solid and dashed lines in Figure 1. In the

common few-shot settings (solid lines), SRR-FSD achieves

competitive performance at higher shots and significantly

better performance at lower shots compared to state-of-the-

art few-shot detectors. In a more realistic setting (dashed

lines) where implicit shots of novel concepts are removed

from the classification dataset for the pretrained model,

SRR-FSD steadily maintains the performance while some

previous methods have results degraded by a large margin

due to the loss of implicit shots. We hope the suggested

realistic setting can serve as a new benchmark protocol for

future research.

We summarize our contributions as follows:

• To our knowledge, our work is the first to investigate

semantic relation reasoning for the few-shot detection

task and show its potential to improve a strong base-

line.

• Our SRR-FSD achieves stable performance w.r.t the

shot variation, outperforming state-of-the-art FSOD

methods under several existing settings especially

when the novel class data is extremely limited.

• We suggest a more realistic FSOD setting in which im-

plicit shots of novel classes are removed from the clas-

sification dataset for the pretrained model, and show
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that our SRR-FSD can maintain a more steady perfor-

mance compared to previous methods if using the new

pretrained model.

2. Related Work

Object Detection Object detection is a fundamental

computer vision task, serving as a necessary step for vari-

ous down-streaming instance-based understanding. Modern

CNN-based detectors can be roughly divided into two cat-

egories. One is single-stage detector such as YOLO [34],

SSD [26], RetinaNet [24], and FreeAnchor [47] which di-

rectly predict the class confidence scores and the bounding

box coordinates over a dense grid. The other is multi-stage

detector such as Faster R-CNN [35], R-FCN [9], FPN [23],

Cascade R-CNN [2], and Libra R-CNN [29] which predict

class-agnostic regions of interest and refine those region

proposals for one or multiple times. All these methods rely

on pre-defined anchor boxes to have an initial estimation of

the size and aspect ratio of the objects. Recently, anchor-

free detectors eliminate the performance-sensitive hyperpa-

rameters for the anchor design. Some of them detect the

key points of bounding boxes [22, 48, 12]. Some of them

encode and decode the bounding boxes as anchor points and

point-to-boundary distances [38, 50, 36, 45, 49]. DETR [3]

reformulates object detection as a direct set prediction prob-

lem and solve it with transformers. However, these detec-

tors are trained with full supervision where each class has

abundant annotated object instances.

Few-Shot Detection Recently, there have been works

focusing on solving the detection problem in the limited

data scenario. LSTD [5] proposes the transfer knowledge

regularization and background depression regularization to

promote the knowledge transfer from the source domain to

the target domain. [11] proposes to iterate between model

training and high-confidence sample selection. RepMet

[20] adopts a distance metric learning classifier into the

RoI classification head. FSRW [19] and Meta R-CNN [44]

predict per-class attentive vectors to reweight the feature

maps of the corresponding classes. MetaDet [41] leverages

meta-level knowledge about model parameter generation

for category-specific components of novel classes. In [14],

the similarity between the few shot support set and query

set is explored to detect novel objects. Context-Transformer

[46] relies on discriminative context clues to reduce object

confusion. TFA [39] only fine-tunes the last few layers of

the detector. Two very recent papers are MPSR [42] and FS-

DetView [43]. MPSR develops an auxiliary branch to gen-

erate multi-scale positive samples as object pyramids and to

refine the prediction at various scales. FSDetView proposes

a joint feature embedding module to share the feature from

base classes. However, all these methods depend purely on

visual information and suffer from shot variation.

Semantic Reasoning in Vision Tasks Semantic word

embeddings have been used in zero-shot learning tasks to

learn a mapping from the visual feature space to the seman-

tic space, such as zero-shot recognition [40] and zero-shot

object detection [1, 32]. In [7], semantic embeddings are

used as the ground-truth of the encoder TriNet to guide the

feature augmentation. In [15], semantic embeddings guide

the feature synthesis for unseen classes by perturbing the

seen feature with the projected difference between a seen

class embedding and a unseen class embedding. In zero-

shot or few-shot recognition [40, 30], word embeddings are

often combined with knowledge graphs to perform relation

reasoning via the graph convolution operation [21]. Knowl-

edge graphs are usually defined based on heuristics from

databases of common sense knowledge rules [28, 4]. [8]

proposed a knowledge graph based on object co-occurrence

for the multi-label recognition task. To our knowledge, the

use of word embeddings and knowledge graphs are rarely

explored in the FSOD task. Any-Shot Detector (ASD) [33]

is the only work that uses word embeddings for the FSOD

task. But ASD focuses more on the zero-shot detection and

it does not consider the explicit relation reasoning between

classes because each word embedding is treated indepen-

dently.

3. Semantic Relation Reasoning Few-Shot De-

tector

In this section, we first briefly introduce the preliminaries

for few-shot object detection including the problem setup

and the general training pipelines. Then based on Faster

R-CNN [35], we build our SRR-FSD by integrating seman-

tic relation with the visual information and allowing it to

perform relation reasoning in the semantic space. We also

discuss the problems of trivially using the raw word em-

beddings and the predefined knowledge graphs. Finally, we

introduce the two-phase training processes. An overview of

our SRR-FSD is illustrated in Figure 3.

3.1. FSOD Preliminaries

Conventional object detection problem has a base class

set Cb in which there are many instances, and a base dataset

Db with abundant images. Db consists of a set of annotated

images {(xi, yi)} where xi is the image and yi is the anno-

tation of labels from Cb and bounding boxes for objects in

xi. For few-shot object detection (FSOD) problem, in ad-

dition to Cb and Db it also has a novel class set Cn and a

novel dataset Dn, with Cb ∩ Cn = ∅. In Dn, objects have

labels belong to Cn and the number of objects for each class

is k for k-shot detection. A few-shot detector is expected to

learn from Db and to quickly generalize to Dn with a small

k such that it can detect all objects in a held-out testing set

with object classes in Cb ∪ Cn. We assume all classes in

Cb ∪ Cn have semantically meaningful names so the corre-

sponding semantic embeddings can be retrieved.
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Figure 3. Overview of the SRR-FSD. A semantic space is built

from the word embeddings of all corresponding classes in the

dataset and is augmented through a relation reasoning module. Vi-
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A typical few-shot detector has two training phases. The

first one is the base training phase where the detector is

trained on Db similarly to conventional object detectors.

Then in the second phase, it is further fine-tuned on the

union of Db and Dn. To avoid the dominance of objects

from Db, a small subset is sampled from Db such that the

training set is balanced concerning the number of objects

per class. As the total number of classes is increased by the

size of Cn in the second phase, more class-specific parame-

ters are inserted in the detector and trained to be responsible

for the detection of novel objects. The class-specific param-

eters are usually in the box classification and localization

layers at the very end of the network.

3.2. Semantic Space Projection

Our few-shot detector is built on top of Faster R-CNN

[35], a popular two-stage general object detector. In the

second-stage of Faster R-CNN, a feature vector is extracted

for each region proposal and forwarded to a classification

subnet and a regression subnet. In the classification subnet,

the feature vector is transformed into a d-dimentional vector

v ∈ Rd through fully-connected layers. Then v is multi-

plied by a learnable weight matrix W ∈ RN×d to output a

probability distribution as in Eq. (1).

p = softmax(Wv + b) (1)

where N is the number of classes and b ∈ RN is a learnable

bias vector. Cross-entropy loss is used during training.

To learn objects from both the visual information and

the semantic relation, we first construct a semantic space

and project the visual feature v into this semantic space.

Specifically, we represent the semantic space using a set

of de-dimensional word embeddings We ∈ RN×de [27]

corresponding to the N object classes (including the back-

ground class). And the detector is trained to learn a linear

projection P ∈ Rde×d in the classification subnet (see Fig-

ure 3) such that v is expected to align with its class’s word

embedding after projection. Mathematically, the prediction

of the probability distribution turns into Eq. (2) from Eq.

(1).

p = softmax(WePv + b) (2)

During training, We is fixed and the learnable variable is

P. A benefit is that generalization to novel objects involves

no new parameters in P. We can simply expand We with

embeddings of novel classes. We still keep the b to model

the category imbalance in the detection dataset.

Domain gap between vision and language. We en-

codes the knowledge of semantic concepts from natural lan-

guage. While it is applicable in zero-shot learning, it will

introduce the bias of the domain gap between vision and

language to the FSOD task. Because unlike zero-shot learn-

ing where unseen classes have no support from images, the

few-shot detector can rely on both the images and the em-

beddings to learn the concept of novel objects. When there

are very few images to rely on, the knowledge from embed-

dings can guide the detector towards a decent solution. But

when more images are available, the knowledge from em-

beddings may be misleading due to the domain gap, result-

ing in a suboptimal solution. Therefore, we need to aug-

ment the semantic embeddings to reduce the domain gap.

Some previous works like ASD [33] apply a trainable trans-

formation to each word embedding independently. But we

find leveraging the explicit relationship between classes is

more effective for embedding augmentation, leading to the

proposal of the dynamic relation graph in Section 3.3.

3.3. Relation Reasoning

The semantic space projection learns to align the con-

cepts from the visual space with the semantic space. But it

still treats each class independently and there is no knowl-

edge propagation among classes. Therefore, we further

introduce a knowledge graph to model their relationships.

The knowledge graph G is a N×N adjacency matrix repre-

senting the connection strength for every neighboring class

pairs. G is involved in classification via the graph convolu-

tion operation [21]. Mathematically, the updated probabil-

ity prediction is shown in Eq. (3).

p = softmax(GWePv + b) (3)

The heuristic definition of the knowledge graph. In

zero-shot or few-shot recognition algorithms, the knowl-

edge graph G is predefined base on heuristics. It is usually

constructed from a database of common sense knowledge

rules by sampling a sub-graph through the rule paths such

that semantically related classes have strong connections.

For example, classes from the ImageNet dataset [10] have

a knowledge graph sampled from the WordNet [28]. How-

ever, classes in FSOD datasets are not highly semantically
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related, nor do they form a hierarchical structure like the

ImageNet classes. The only applicable heuristics we found

are based on object co-occurrence from [8]. Although the

statistics of the co-occurrence are straightforward to com-

pute, the co-occurrence is not necessarily equivalent to se-

mantic relation.

Instead of predefining a knowledge graph based on

heuristics, we propose to learn a dynamic relation graph

driven by the data to model the relation reasoning between

classes. The data-driven graph is also responsible for reduc-

ing the domain gap between vision and language because it

is trained with image inputs. Inspired by the concept of the

transformer, we implement the dynamic graph with the self-

attention architecture [37] as shown in Figure 4. The orig-

inal word embeddings We are transformed by three linear

layers f, g, h, and a self-attention matrix is computed from

the outputs of f, g. The self-attention matrix is multiplied

with the output of h followed by another linear layer l. A

residual connection [16] adds the output of l with the origi-

nal We. Another advantage of learning a dynamic graph is

that it can easily adapt to new coming classes. Because the

graph is not fixed and is generated on the fly from the word

embeddings. We do not need to redefine a new graph and

retrain the detector from the beginning. We can simply in-

sert corresponding embeddings of new classes and fine-tune

the detector.

3.4. Decoupled Finetuning

In the second fine-tuning phase, we only unfreeze the

last few layers of our SRR-FSD similar to TFA [39]. For

the classification subnet, we fine-tune the parameters in the

relation reasoning module and the projection matrix P. For

the localization subnet, it is not dependent on the word em-

beddings but it shares features with the classification subnet.

We find that the learning of localization on novel objects

can interfere with the classification subnet via the shared

features, leading to many false positives. Decoupling the

shared fully-connected layers between the two subnets can

effectively make each subnet learn better features for its

task. In other words, the classification subnet and the lo-

calization subnet have individual fully-connected layers and

they are fine-tuned independently.

4. Experiments

4.1. Implementation Details

Our SRR-FSD is implemented based on Faster R-CNN

[35] with ResNet-101 [16] and Feature Pyramid Network

[23] as the backbone using the MMDetection [6] frame-

work. All models are trained with Stochastic Gradient

Descent (SGD) and a batch size of 16. For the word

embeddings, we use the L2-normalized 300-dimensional

Word2Vec [27] vectors from the language model trained on

large unannotated texts like Wikipedia. In the relation rea-

soning module, we reduce the dimension of word embed-

dings to 32 which is empirically selected. In the first base

training phase, we set the learning rate, the momentum, and

the weight decay to 0.02, 0.9, and 0.0001, respectively. In

the second fine-tuning phase, we reduce the learning rate

to 0.001 unless otherwise mentioned. The input image is

sampled by first randomly choosing between the base set

and the novel set with a 50% probability and then randomly

selecting an image from the chosen set.

4.2. Existing Settings

We follow the existing settings in previous FSOD meth-

ods [19, 41, 44, 39] to evaluate our SRR-FSD on the VOC

[13] and COCO [25] datasets. For fair comparison and re-

duced randomness, we use the same data splits and a fixed

list of novel samples provided by [19].

VOC The 07 and 12 train/val sets are used for training

and the 07 test set is for testing. Out of its 20 object classes,

5 classes are selected as novel and the remaining 15 are base

classes, with 3 different base/novel splits. The novel classes

each have k annotated objects, where k equals 1, 2, 3, 5,

10. In the first base training phase, our SRR-FSD is trained

for 18 epochs with the learning rate multiplied by 0.1 at

the 12th and 15th epoch. In the second fine-tuning phase,

we train for 500 × |Dn| steps where |Dn| is the number of

images in the k-shot novel dataset.

We report the mAP50 of the novel classes on VOC with 3

splits in Table 1. In all different base/novel splits, our SRR-

FSD achieves a more shot-stable performance. At higher

shots like 5-shot and 10-shot, our performance is competi-

tive compared to previous state-of-the-art methods. At more

challenging conditions with shots less than 5, our approach

can outperform the second-best by a large margin (up to

10+ mAP). Compared to ASD [33] which only reports re-

sults of 3-shot and 5-shot in the Novel Set 1, ours is 24.2

and 6.0 better respectively in mAP. We do not include ASD

in Table 1 because its paper does not provide the complete

results on VOC.

Learning without forgetting is another merit of our SRR-

FSD. After generalization to novel objects, the performance
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Novel Set 1 Novel Set 2 Novel Set 3

Method / shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [19] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

MetaDet [41] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

Meta R-CNN [44] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA [39] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

SRR-FSD (Ours) 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
Table 1. FSOD evaluation on VOC. We report the mAP with IoU threshold 0.5 (mAP50) under 3 different sets of 5 novel classes with a

small number of shots.

Shot Method Base AP50 Novel AP50

3

Meta R-CNN [44] 64.8 35.0

TFA [39] 79.1 44.7

Ours base only 77.7 n/a

SRR-FSD (Ours) 78.2 51.3

10

Meta R-CNN [44] 67.9 51.5

TFA [39] 78.4 56.0

Ours base only 77.7 n/a

SRR-FSD (Ours) 78.2 56.8
Table 2. FSOD performance for the base and novel classes on

Novel Set 1 of VOC. Our SRR-FSD has the merit of learning with-

out forgetting.

on the base objects does not drop at all as shown in Table

2. Both base AP and novel AP of our SRR-FSD compare

favorably to previous methods based on the same Faster R-

CNN with ResNet-101. The base AP even increases a bit

probably due to the semantic relation reasoning from lim-

ited novel objects to base objects.

COCO The minival set with 5000 images is used for

testing and the rest images in train/val sets are for training.

Out of the 80 classes, 20 of them overlapped with VOC are

the novel classes with k = 10, 30 shots per class and the re-

maining 60 classes are base. We train the SRR-FSD on the

base dataset for 12 epochs using the same setting as MMDe-

tection [6] and fine-tune it for a fixed number of 10 × |Db|
steps where |Db| is the number of images in the base dataset.

Unlike VOC, the base dataset in COCO contains unlabeled

novel objects, so the region proposal network (RPN) treats

them as the background. To avoid omitting novel objects

in the fine-tuning phase, we unfreeze the RPN and the fol-

lowing layers. Table 3 presents the COCO-style averaged

AP. Again we consistently outperform previous methods in-

cluding FSRW [19], MetaDet [41], Meta R-CNN [44], TFA

[39], and MPSR [42].

COCO to VOC For the cross-domain FSOD setting, we

follow [19, 41] to use the same base dataset with 60 classes

as in the previous COCO within-domain setting. The novel

dataset consists of 10 samples for each of the 20 classes

from the VOC dataset. The learning schedule is the same

as the previous COCO within-domain setting except the

learning rate is 0.005. Figure 5 shows that our SRR-FSD

Shot Method AP AP50 AP75

10

FSRW [19] 5.6 12.3 4.6

MetaDet [41] 7.1 14.6 6.1

Meta R-CNN [44] 8.7 19.1 6.6

TFA [39] 10.0 - 9.3

MPSR [42] 9.8 17.9 9.7

SRR-FSD (Ours) 11.3 23.0 9.8

30

FSRW [19] 9.1 19.0 7.6

MetaDet [41] 11.3 21.7 8.1

Meta R-CNN [44] 12.4 25.3 10.8

TFA [39] 13.7 - 13.4

MPSR [42] 14.1 25.4 14.2

SRR-FSD (Ours) 14.7 29.2 13.5
Table 3. FSOD performance of the novel classes on COCO.
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Figure 5. 10-shot cross domain performance on the 20 novel

classes under COCO to VOC.

achieves the best performance with a healthy 44.5 mAP, in-

dicating better generalization ability in cross-domain situa-

tions.

4.3. A More Realistic Setting

The training of the few-shot detector usually involves

initializing the backbone network with a model pretrained

on large-scale object classification datasets such as Ima-

geNet [10]. The set of object classes in ImageNet, i.e. C0,

is highly overlapped with the novel class set Cn in the exist-

ing settings. This means that the pretrained model can get

early access to large amounts of object samples, i.e. implicit
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Novel Set 1 Novel Set 2 Novel Set 3

Method / shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW [19] 13.9 21.1 20.0 29.9 40.8 13.5 14.2 20.6 20.7 36.8 16.2 22.2 26.8 37.0 41.5

Meta R-CNN [44] 11.5 22.2 24.7 36.4 45.2 10.1 16.9 22.7 29.6 40.1 10.0 21.7 27.1 32.8 41.6

TFA [39] 35.8 39.5 44.2 50.8 55.3 18.8 26.0 33.2 31.3 39.2 25.6 32.6 36.4 43.7 48.5

SRR-FSD (Ours) 46.3 51.1 52.6 56.2 57.3 31.0 29.9 34.7 37.3 41.7 39.2 40.5 39.7 42.2 45.2
Table 4. FSOD performance (mAP50) on VOC under a more realistic setting where novel classes are removed from the pretrained classifi-

cation dataset to guarantee C0 ∩ Cn = ∅. Our SRR-FSD is more robust to the loss of implicit shots comparing with Table 1.

shots, from novel classes and encode their knowledge in the

parameters before it is further trained for the detection task.

Even the pretrained model is optimized for the recognition

task, the extracted features still have a big impact on the de-

tection of novel objects (see Figure 1). However, some rare

classes may have highly limited or valuable data in the real

world that pretraining a classification network on it is not

realistic.

Therefore, we suggest a more realistic setting for FSOD,

which extends the existing settings. In addition to Cb∩Cn =
∅, we also require that C0 ∩ Cn = ∅. To achieve this, we

systematically and hierarchically remove novel classes from

C0. For each class in Cn, we find its corresponding synset

in ImageNet and obtain its full hyponym (the synset of the

whole subtree starting from that synset) using the ImageNet

API 1. The images of this synset and its full hyponym are

removed from the pretrained dataset. And the classification

model is trained on a dataset with no novel objects. We

provide the list of WordNet IDs for each novel class to be

removed in the supplementary materials.

We notice that CoAE [18] also proposed to remove all

COCO-related ImageNet classes to ensure the model does

not “foresee” the unseen classes. As a result, a total of 275

classes are removed from ImageNet including both the base

and novel classes in VOC [13], which correspond to more

than 300k images. We think the loss of this much data may

lead to a worse pretrained model in general. So the pre-

trained model may not be able to extract features strong

enough for down-streaming vision tasks compared with the

model trained on full ImageNet. Our setting, on the other

hand, tries to alleviate this effect as much as possible by

only removing the novel classes in VOC Novel Set 1, 2, and

3 respectively, which correspond to an average of 50 classes

from ImageNet.

Under the new realistic setting, we re-evaluate previous

methods using their official source code and report the per-

formance on the VOC dataset in Table 4. Our SRR-FSD

demonstrates superior performance to other methods under

most conditions, especially at challenging lower shot sce-

narios. More importantly, our SRR-FSD is less affected by

the loss of implicit shots. Compared with results in Table

1, our performance is more stably maintained when novel

1http://image-net.org/download-API

objects are only available in the novel dataset.

4.4. Ablation Study

In this section, we study the contribution of each com-

ponent. Experiments are conducted on the VOC dataset.

Our baseline is the Faster R-CNN [35] with ResNet-101

[16] and FPN [23]. We gradually apply the Semantic Space

Projection (SSP 3.2), Relation Reasoning (RR 3.3) and De-

coupled Fine-tuning (DF 3.4) to the baseline and report the

performance in Table 5. We also compare three different

ways of augmenting the raw word embeddings in Table 6,

including the trainable transformation from ASD [33], the

heuristic knowledge graph from [8], and the dynamic graph

from our proposed relation reasoning module.

Semantic space projection guides shot-stable learn-

ing. The baseline Faster R-CNN can already achieve satis-

fying results at 5-shot and 10-shot. But at 1-shot and 2-shot,

performance starts to fall apart due to exclusive dependence

on images. The semantic space projection, on the other

hand, makes the learning more stable to the variation of shot

numbers (see 1st and 2nd entries in Table 5). The space

projection guided by the semantic embeddings is learned

well enough in the base training phase so it can be quickly

adapted to novel classes with a few instances. We can ob-

serve a major boost at lower shot conditions compared to

baseline, i.e. 7.9 mAP and 2.4 mAP gain at 1-shot and 2-

shot respectively. However, the raw semantic embeddings

limit the performance at higher shot conditions. The perfor-

mance at 5-shot and 10-shot drops below the baseline. This

verifies our argument about the domain gap between vision

and language. At lower shots, there is not much visual in-

formation to rely on so the language information can guide

the detector to a decent solution. But when more images are

available, the visual information becomes more precise then

the language information starts to be misleading. Therefore,

we propose to refine the word embeddings for a reduced do-

main gap.

Relation reasoning promotes adaptive knowledge

propagation. The relation reasoning module explicitly

learns a relation graph that builds direct connections be-

tween base classes and novel classes. So the detector can

learn the novel objects using the knowledge of base objects

besides the visual information. Additionally, the relation
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Components Shots in Novel Set 1

SSP RR DF 1 2 3 5 10

Faster R-CNN [35] 32.6 44.4 46.3 49.6 55.6

X 40.5 46.8 46.5 47.1 52.2

X X 44.1 46.0 47.8 51.7 54.7

SRR-FSD X X X 47.8 50.5 51.3 55.2 56.8
Table 5. Ablative performance (mAP50) on the VOC Novel Set 1 by gradually applying the proposed components to the baseline Faster

R-CNN. SSP: semantic space projection. RR: relation reasoning. DF: decoupled fine-tuning.

Shots in Novel Set 1

1 2 3 5 10

+SSP 40.5 46.8 46.5 47.1 52.2

+SSP +TT [33] 39.3 45.7 43.9 49.4 52.4

+SSP +HKG [8] 41.6 45.5 47.8 49.7 52.5

+SSP +RR 44.1 46.0 47.8 51.7 54.7
Table 6. Comparison of three ways of refining the word embed-

dings, including the trainable transformation from ASD [33], the

heuristic knowledge graph from [8], and the dynamic relation

graph from our relation reasoning module. SSP: semantic space

projection. RR: relation reasoning. TT: trainable transformation.

HKG: heuristic knowledge graph.

reasoning module also functions as a refinement to the raw

word embeddings with a data-driven relation graph. Since

the relation graph is updated with image inputs, the refine-

ment tends to adapt the word embeddings for the vision do-

main. Results in Table 5 (2nd and 3rd entries) confirm that

applying relation reasoning improves the detection accuracy

of novel objects under different shot conditions. We also

compare it with two other ways of refining the raw word

embeddings in Table 6. One is the trainable transformation

(TT) from ASD [33] where word embeddings are updated

with a trainable metric and a word vocabulary. Note that

this transformation is applied to each embedding indepen-

dently which does not consider the explicit relationships be-

tween them. The other one is the heuristic knowledge graph

(HKG) defined based on the co-occurrence of objects from

[8]. It turns out both the trainable transformation and the

predefined heuristic knowledge graph are not as effective as

the dynamic relation graph in the relation reasoning mod-

ule. The effect of the trainable transformation is similar to

unfreezing more parameters of the last few layers during

fine-tuning as shown in the supplementary materials, which

leads to overfitting when the shot is low. And the prede-

fined knowledge graph is fixed during training thus cannot

be adaptive to the inputs. In other words, the dynamic rela-

tion graph is better because it can not only perform explicit

relation reasoning but also augment the raw embeddings for

reduced domain gap between vision and language.

Decoupled fine-tuning reduces false positives. We an-

alyze the false positives generated by our SRR-FSD with

and without decoupled fine-tuning (DF) using the detector
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Figure 6. Error analysis of false positives in VOC Novel Set 1

with and without decouple fine-tuning (DF). Detectors are trained

with 3 shots. Pie charts indicate the fraction of correct detections

(Cor) and top-ranked false positives that are due to poor localiza-

tion (Loc), confusion with similar objects (Sim), confusion with

other VOC objects (Oth), or confusion with background or unla-

beled objects (BG).

diagnosing tool [17]. The effect of DF on reducing the false

positives in novel classes is visualized in Figure 6. It shows

that most of the false positives are due to misclassification

into similar categories. With DF, the classification subnet

can be trained independently from the localization subnet

to learn better features specifically for classification.

5. Conclusion

In this work, we propose semantic relation reasoning for

few-shot object detection. The key insight is to explicitly

integrate semantic relation between base and novel classes

with the available visual information, which can help to

learn the novel concepts better especially when the novel

class data is extremely limited. We apply the semantic re-

lation reasoning to the standard two-stage Faster R-CNN

and demonstrate robust few-shot performance against the

variation of shot numbers. Compared to previous meth-

ods, our approach achieves state-of-the-art results on sev-

eral few-shot detection settings, as well as a more realis-

tic setting where novel concepts encoded in the pretrained

backbone model are eliminated. We hope this realistic set-

ting can be a better evaluation protocol for future few-shot

detectors. Last but not least, the key components of our

approach, i.e. semantic space projection and relation rea-

soning, can be straightly applied to the classification subnet

of other few-shot detectors.
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