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Abstract

Cross-view image geo-localization aims to determine the

locations of street-view query images by matching with

GPS-tagged reference images from aerial view. Recent

works have achieved surprisingly high retrieval accuracy

on city-scale datasets. However, these results rely on the

assumption that there exists a reference image exactly cen-

tered at the location of any query image, which is not ap-

plicable for practical scenarios. In this paper, we redefine

this problem with a more realistic assumption that the query

image can be arbitrary in the area of interest and the refer-

ence images are captured before the queries emerge. This

assumption breaks the one-to-one retrieval setting of exist-

ing datasets as the queries and reference images are not

perfectly aligned pairs, and there may be multiple refer-

ence images covering one query location. To bridge the

gap between this realistic setting and existing datasets, we

propose a new large-scale benchmark –VIGOR– for cross-

View Image Geo-localization beyond One-to-one Retrieval.

We benchmark existing state-of-the-art methods and pro-

pose a novel end-to-end framework to localize the query

in a coarse-to-fine manner. Apart from the image-level re-

trieval accuracy, we also evaluate the localization accuracy

in terms of the actual distance (meters) using the raw GPS

data. Extensive experiments are conducted under differ-

ent application scenarios to validate the effectiveness of the

proposed method. The results indicate that cross-view geo-

localization in this realistic setting is still challenging, fos-

tering new research in this direction. Our dataset and code

will be released at https://github.com/Jeff-

Zilence/VIGOR.

1. Introduction

The objective of image-based geo-localization is to de-

termine the location of a query image by finding the most

similar image in a GPS-tagged reference database. Such

technologies have proven useful for accurate localization

with noisy GPS signals [4, 26] and navigation in crowded

cities [12, 9]. Recently, there has been a surge of interest

in cross-view geo-localization [24, 22, 7, 17, 29, 21], which

uses GPS-tagged aerial-view images as reference for street-

view queries. However, the performance may suffer from a

large appearance gap between query and reference images.

Recent works [7, 17, 29] have shown that the perfor-

mance of cross-view image matching can be significantly

improved by feature aggregation and sample mining strate-

gies. When the orientation of street-view (or ground-view)

image is available (provided by phone-based compass),

state-of-the-art methods can achieve a top-1 retrieval accu-

racy over 80% [17], which shows the possibility of accu-

rate geo-localization in real-world settings. However, ex-

isting datasets [24, 27, 11] simply assume that each query

ground-view image has one corresponding reference aerial-

view image whose center is exactly aligned at the location

of the query image. We argue this is not practical for real-

world applications, because the query image can occur at

arbitrary locations in the area of interest and the reference

images should be captured before the queries emerge. In

this case, perfectly aligned one-to-one correspondence is

not guaranteed.

In light of the novelty of this problem, we propose

a new benchmark (VIGOR) to evaluate cross-view geo-

localization in a more realistic setting. Briefly, given an area

of interest (AOI), the reference aerial images are densely

sampled to achieve a seamless coverage of the AOI and the

street-view queries are captured at arbitrary locations. In

total, 90, 618 aerial images and 238, 696 street panoramas

are collected from 4 major cities in the United States (see

details in Sec. 3). The new dataset gives rise to two funda-

mental differences between this work and prior research.

Beyond One-to-one: Previous research mainly focuses

on the one-to-one correspondence because existing datasets

consider perfectly aligned image pairs as default. However,

VIGOR enables us to explore the effect of reference sam-

ples that are not centered at the locations of queries but still

cover the query area. As a result, there could be multiple

reference images partially covering the same query loca-

tion, breaking the one-to-one correspondence. In our geo-

localization method, we design a novel hybrid loss to take

advantage of multiple reference images during training.
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Beyond Retrieval: Image retrieval can only provide

image-level localization. Since the center alignment is not

guaranteed in our dataset, after the retrieval, we further

employ a within-image calibration to predict the offset of

the query location inside the retrieved image. Therefore,

the proposed joint-retrieval-and-calibration framework pro-

vides a coarse-to-fine localization. The whole pipeline is

end-to-end, and the inference is fast as the offset prediction

shares the feature descriptors with the retrieval task. More-

over, our dataset is also accompanied with raw GPS data.

Thus a more direct performance assessment, i.e. localiza-

tion accuracy in terms of real-world distance (e.g. meters),

can be achieved on our dataset.

Our main contributions can be summarized as follows:

• We introduce a new dataset for the problem of cross-view

image geo-localization. This dataset, for the first time,

allows one to study this problem under a more realistic

and practical setting and offers a testbed for bridging the

gap between current research and practical applications.

• We propose a novel joint-retrieval-and-calibration frame-

work for accurate geo-localization in a coarse-to-fine

manner, which has not been explored in the past.

• We develop a new hybrid loss to learn from multiple ref-

erence images during training, which is demonstrated to

be effective in various experimental settings.

• We also validate the potential of the proposed cross-view

geo-localization framework in a real-world application

scenario (assistive navigation) by simulating noisy GPS.

2. Related Work

Cross-view Datasets. A number of datasets have been

proposed for cross-view geo-localization [10, 25, 24, 27,

22, 11]. Lin et al. [10] consider both satellite images and

land cover attributes for cross-view geo-localization. 6, 756
ground-view images and 182,988 aerial images are col-

lected from Charleston, South Carolina. Although the aerial

images are densely sampled, they force a one-to-one cor-

respondence between two views and evaluation in terms

of distance is not available. The original CVUSA [25] is

a massive dataset containing more than 1 million ground-

level and aerial images from multiple cities in the United

States. Zhai et al. [27] further make use of the camera’s

extrinsic parameters to generate aligned pairs by warping

the panoramas, resulting in 35,532 image pairs for train-

ing and 8,884 image pairs for testing. This version of

CVUSA is the most widely used dataset in recent research

[7, 17, 29, 14, 23] and we refer to it as CVUSA if not speci-

fied. Vo [24] consists of about one million image pairs from

11 cities in the United States. The authors randomly col-

lect street-view panoramas and generate several crops from

each panorama along with spatially aligned aerial images

from Google Maps. Similar to CVUSA, CVACT [11] also

consists of aligned panoramas and aerial images with ori-

entation information. It has 35, 532 image pairs for training

and 92, 802 pairs for testing. In a nutshell, all these datasets

consider one-to-one retrieval and none of them provide raw

GPS data for localization evaluation in terms of meters.

Cross-view Geo-localization. Early works [10, 25, 24, 22]

of cross-view geo-localization suffer from low retrieval ac-

curacy mainly because of the significant appearance gap be-

tween two views and poor metric learning techniques. With

tailored feature extractors and a modified loss function, Hu

et al. [7] show the possibility of achieving accurate localiza-

tion with end-to-end deep neural networks. Several recent

methods [14, 17] aim to reduce the domain gap by lever-

aging GANs [6] and polar transformations [18]. Regmi et

al. [14] propose to generate the synthetic aerial-view image

from the ground-view query with a conditional GAN and

adopt feature fusion to achieve better performance. SAFA

[17] further takes advantage of the geometric prior knowl-

edge by applying a polar transformation on the query image

and replacing the global pooling with feature aggregation

blocks. The top-1 accuracy of [17] on CVUSA [27] is al-

most 90% if the orientation information is given. Other ap-

proaches [5, 29] exploring metric learning techniques (e.g.

hard samples mining strategy) also show promising results

on popular datasets, and they are not restricted by the geo-

metric assumptions. However, none of these methods con-

sider a sub-image level localization beyond the image-level

retrieval or multiple reference images for training.

3. VIGOR Dataset

Problem Statement. Given an area of interest (AOI), our

objective is to localize an arbitrary street-view query in this

area by matching it with aerial reference images. To guar-

antee that any possible query is covered by at least one ref-

erence image, the reference aerial images must provide a

seamless coverage of the AOI. As shown in Fig. 1 (a),

coarsely sampled reference images (black square boxes) are

not able to provide full coverage of the AOI, and an arbitrary

query location (the red star) may lie in the area between

reference samples. Even if the query location (the yellow

star) lies at the edge of a reference aerial image, this refer-

ence image only shares partial (at most half) scene with the

one whose center is at the query location, which may not

provide enough information to be distinguished from other

negative reference images. These queries can be covered by

adding additional overlapping samples (the green box). As

shown in Fig. 1 (b), if query locations (red stars) lie at the

central area (the black dotted box) of the L× L aerial im-

age, the query and reference images are defined as positive

samples for each other. Other queries (blue stars) outside

the central area are defined as semi-positive samples. To

guarantee that any arbitrary query has one positive reference

image, we propose to densely sample the aerial images with

50% overlap along both latitude and longitude directions as
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Figure 1. The sampling strategy of the proposed dataset. The stars denote the query locations.

demonstrated in Fig. 1 (c). By doing so, any arbitrary query

location (the red star) in the AOI is covered by four refer-

ence images (size L × L). The green box denotes the pos-

itive reference and the other three semi-positive references

are denoted as blue boxes. The positive reference is consid-

ered as ground-truth, because it has the nearest GPS to the

query and contains the most shared objects with the query

image. The red box denotes the perfectly aligned aerial im-

age. Based on the definitions of positive and semi-positive

as illustrated in Fig. 1 (b), we can easily see that all positive

reference images have an IOU (Intersection Over Union)

greater than 0.39 with the perfectly aligned reference (see

Fig. 1 (d)). The IOU of a typical positive sample (offset rel-

ative to the center equals to (± L
8 ,±

L
8 )) is 0.62. The IOU

between the semi-positive samples and the aligned refer-

ence falls in [ 1
7 ≈ 0.14, 9

23 ≈ 0.39].

Manhattan Chicago SeattleSan Francisco

Figure 2. Aerial image coverage (black polygon) in four cities and

the distributions of panoramas (red dots).

Data Collection. As shown in Fig. 2, we collect 90, 618
aerial images covering the central areas of four cities, i.e.

New York City (Manhattan), San Francisco, Chicago, and

Seattle, as the AOI using the Google Maps Static API [2].

Then 238, 696 street-view panorama images are collected

with the Google Street-View Static API [1] at zoom level 2

on most of the streets. All the GPS locations of panorama

images are unique in our dataset, and the typical interval

between samples is about 30 m. We perform data balanc-

ing on the original panoramas to make sure that each aerial

image has no more than 2 positive panoramas (see Fig. 3,

Figure 3. An example of positive samples (stars) and the orienta-

tion correspondence between aerial and ground views. The yellow

bar indicates North.

the distributions are included in the supplementary mate-

rial). This procedure results in 105, 214 panoramas for the

geo-localization experiments. Also, around 4% of the aerial

images cover no panoramas. We keep them as distraction

samples to make the dataset more realistic and challenging.

The zoom level for satellite images is 20 and the ground res-

olution is around 0.114 m. The raw image sizes for aerial-

view and ground-view are 640× 640 and 2048× 1024, re-

spectively. Industrial-grade GPS tags for both aerial-view

and ground-view images are provided for meter-level eval-

uation. The panoramas are then shifted according to the ori-

entation information so that North lies in the middle. Fig. 3

shows an example of orientation correspondence between a

pair of aerial and street-view images.

Head-to-head Comparison. Table 1 shows a compari-

son between our dataset and previous benchmarks. The

most widely used dataset, CVUSA [27], consists of im-

ages mainly collected at suburban areas. Our dataset, on the

other hand, is collected for urban environments. In prac-

tice, the GPS signal is more likely to be noisy in urban ar-

eas than suburban (e.g. the phone-based GPS error can be

up to 50 meters in Manhattan [4]). Therefore, our dataset
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