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Abstract

In this paper, we contribute a new million-scale face

benchmark containing noisy 4M identities/260M faces

(WebFace260M) and cleaned 2M identities/42M faces

(WebFace42M) training data, as well as an elaborately de-

signed time-constrained evaluation protocol. Firstly, we

collect 4M name list and download 260M faces from the

Internet. Then, a Cleaning Automatically utilizing Self-

Training (CAST) pipeline is devised to purify the tremen-

dous WebFace260M, which is efficient and scalable. To

the best of our knowledge, the cleaned WebFace42M is the

largest public face recognition training set and we expect to

close the data gap between academia and industry. Refer-

ring to practical scenarios, Face Recognition Under Infer-

ence Time conStraint (FRUITS) protocol and a test set are

constructed to comprehensively evaluate face matchers.

Equipped with this benchmark, we delve into million-

scale face recognition problems. A distributed framework is

developed to train face recognition models efficiently with-

out tampering with the performance. Empowered by Web-

Face42M, we reduce relative 40% failure rate on the chal-

lenging IJB-C set, and rank the 3rd among 430 entries on

NIST-FRVT. Even 10% data (WebFace4M) shows superi-

or performance compared with public training set. Fur-

thermore, comprehensive baselines are established on our

rich-attribute test set under FRUITS-100ms/500ms/1000ms

protocol, including MobileNet, EfficientNet, AttentionNet,

ResNet, SENet, ResNeXt and RegNet families. Benchmark

website is https://www.face-benchmark.org.

1. Introduction

Recognizing faces in the wild has achieved a remark-

able success due to the boom of CNNs. The key engine

of recent face recognition consists of network architec-

ture evolution [31, 58, 52, 23, 28, 53, 22, 86, 24, 76, 56],

∗These authors contributed equally to this work.
†Jiwen Lu is the corresponding author.
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Figure 1: Comparisons of # identities and # faces for our WebFace data

and public training set.

a variety of loss functions [59, 47, 57, 54, 73, 14, 45,

67, 33, 32, 68, 66, 12, 27], and growing face benchmark-

s [26, 37, 49, 88, 63, 29, 30, 74, 36, 84, 41, 8, 7, 38, 21, 64].

Face benchmarks empower researchers to train and e-

valuate high-performance face recognition systems. Even

though growing efforts have been devoted to investigat-

ing sophisticated networks [9, 80, 8, 71, 16] and losses

[32, 68, 66, 12, 27, 55, 10], academia is restricted by limited

training set and nearly saturated test protocols. As shown in

Tab.1, the public largest training sets in terms of identities

and faces are MegaFace2 [38] and MS1M [21], respectively.

MegaFace2 contains 4.7M faces of 672K subjects collect-

ed from Flickr [62]. MS1M consists of 10M faces of 100K

celebrities but the noise rate is around 50% [64]. In contrast,

companies from industry can access much larger private da-

ta to train face recognition models: Google utilizes 200M

images of 8M identities to train FaceNet [47], and Face-

book [60] performs training by 500M faces of 10M identi-

ties. This data gap hinders researchers to push the frontiers

of deep face recognition. Main obstacles for tremendous

training data lie in large-scale identity collection, effective

and scalable cleaning, and efficient training.

On the other hand, evaluation protocols and test set

play an essential role in analysing face recognition perfor-

mance. Popular evaluations for face recognition includ-
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Dataset # Identities # Images Images/ID Cleaning # Attributes Availability Publications

CASIA-WebFace [84] 10 K 0.5 M 47 Auto - Public Arxiv 2014

CelebFaces [57] 10 K 0.2 M 20 Manual 40 Public ICCV 2015

UMDFaces [7] 8 K 0.3 M 45 Semi-auto 4 Public IJCB 2017

VGGFace [41] 2 K 2.6 M 1,000 Semi-auto - Public BMVC 2015

VGGFace2 [8] 9 K 3.3 M 363 Semi-auto 11 Public FG 2018

MS1M [21] 0.1 M 10 M 100 No - Public ECCV 2016

MS1M-IBUG [14] 85 K 3.8 M 45 Semi-auto - Public CVPRW 2017

MS1MV2 [12] 85 K 5.8 M 68 Semi-auto - Public CVPR 2019

MS1M-Glint [1] 87 K 3.9 M 44 Semi-auto - Public -

MegaFace2 [38] 0.6 M 4.7 M 7 Auto - Public CVPR 2017

IMDB-Face [64] 59 K 1.7 M 29 Manual - Public ECCV 2018

Facebook [59] 4 K 4.4 M 1,100 - - Private CVPR 2014

Facebook [60] 10 M 500 M 50 - - Private CVPR 2015

Google [47] 8 M 200 M 25 - - Private CVPR 2015

MillionCelebs [87] 0.6 M 18.8 M 30 Auto - Private CVPR 2020

WebFace260M 4 M 260M 65 No - Public -

WebFace42M 2 M 42M 21 Auto 7 Public -

Table 1: Training data for deep face recognition. The cleaned WebFace42M is the largest public training set in terms of both # identities and # images.

ing LFW families [26, 88, 63], CFP [49], AgeDB [37], R-

FW [70], MegaFace [29], IJB families [30, 74, 36] main-

ly target the pursuit of the accuracy, which have been al-

most saturated recently. In real-world application scenar-

ios, face recognition is always restricted by the inference

time, such as unlocking mobile telephone with smooth ex-

perience. Lightweight face recognition challenge [13] takes

a step toward this goal, but it neglects the time cost of de-

tection and alignment. To the best of our knowledge, NIST-

FRVT [2] is the only time-constrained face recognition pro-

tocol. However, strict submission policy (no more than one

submission every four calendar months) hinders researchers

to freely evaluate their algorithms.

To address above problems, this paper constructs a new

large-scale face benchmark consists of 4M identities/260M

faces (WebFace260M) as well as a time-constrained assess-

ment protocol. Firstly, a name list of 4M celebrities is col-

lected and 260M images are downloaded utilizing a search

engine. Then, we perform Cleaning Automatically by Self-

Training (CAST) pipeline, which is scalable and does not

need any human intervention. The proposed CAST proce-

dure results in high-quality 2M identities and 42M faces

(WebFace42M). With such data size, a distributed train-

ing framework is developed to perform efficient optimiza-

tion. Referring to various real-world applications, we de-

sign the Face Recognition Under Inference Time conStrain-

t (FRUITS) protocol, which enables academia to evaluate

deep face matchers comprehensively. The FRUITS protocol

consists of 3 tracks: 100, 500 and 1000 milliseconds. Since

public evaluations are most saturated [26, 37, 49] and may

contain noise [29, 36], we manually construct a new test set

with rich attributes to enable FRUITS, including different

age, gender, race and scenario evaluations.

Based on the proposed new large-scale benchmark, we

delve into million-scale deep face recognition problems.

The distributed training approach could be performed at n-

ear linear acceleration without performance drops. Verifica-

tion accuracy on public dataset indicates that the proposed

million-scale training data is indispensable to push the

frontiers of deep face recognition: WebFace42M achieves

97.70% TAR@FAR=1e-4 on challenging IJB-C [36] under

standard ResNet-100 configurations, relatively reducing n-

ear 40% error rate compared with public state-of-the-arts.

10% of our data (WebFace4M) also obtains superior per-

formance than similar-sized MS1M families [14, 12, 1] and

MegaFace2 [38]. Furthermore, we participate in the NIST-

FRVT [2] and ranks the 3rd among 430 entries based on

WebFace42M. Finally, comprehensive face recognition sys-

tems are evaluated under FRUITS-100ms/500ms/1000ms

protocols, including MobileNet [24, 9], EfficientNet [61],

AttentionNet [65], ResNet [23], SENet [25], ResNeXt [78]

and RegNet families [44]. With this new face benchmark,

we hope to close the data gap between the research commu-

nity and industry, and facilitate the time-constrained recog-

nition performance assessment for real-world applications.

The main contributions can be summarized as follows:

• A large-scale face recognition dataset is constructed

for the research community towards closing the data

gap behind the industry. The proposed WebFace260M

consists of 4M identities and 260M faces, which pro-

vides an excellent resource for million-class deep face

cleaning and recognition as shown in Fig.1 and Tab.1.

• We contribute the largest training set WebFace42M

which sets new SOTA on challenging IJB-C and ranks

the 3rd on NIST-FRVT. This cleaned data is automat-

ically purified from WebFace260M by a scalable and

effective self-training pipeline.

• The FRUITS protocol as well as a test set with rich

attributes are constructed to facilitate the evaluation of

real-world applications. A series of tracks are designed

referring to different deployment scenarios.

• Based on the new benchmark, we perform exten-
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Figure 2: Date of birth, nationality and profession of WebFace260M.

sive million-scale face recognition experiments. En-

abled by distributed training framework, comprehen-

sive baselines are established on our test set under the

FRUITS protocol. The results indicate substantial im-

provement room for light-weight track, as well as the

necessity of innovation in heavy-weight track.

2. WebFace260M and WebFace42M

Celebrity name list and image collection. Knowledge

graphs website Freebase [3] and well-curated website IMD-

B [4] provide excellent resources for collecting celebrity

names. Furthermore, commercial search engines such as

Google [5] make it possible to collect images of a specif-

ic identity with ranked correlation. Our celebrity name list

consists of two parts: the first one is borrowed from M-

S1M (1M, constructed from Freebase) and the second one

is collected from the IMDB database. There are nearly 4M

celebrity names in the IMDB website, while we found some

subjects have no public image from search engines. There-

fore, only 3M celebrity names in IMDB are chosen for our

benchmark. Based on the name list, celebrity faces are

searched and downloaded via Google image search engine.

200 images per identity are downloaded for top 10% sub-

jects, while 100, 50, 25 images are reserved for remaining

20%, 30%, 40% subjects, respectively. Finally, we collect

4M identities and 265M images.

Face pre-processing. Faces are detected and aligned

through five landmarks predicted by RetinaFace [11]. For

multi-face images, we only select the largest face with

the above-threshold score, which can filter most improp-

er faces (e.g. background faces or wrong decoding). Af-

ter pre-processing, there remains 4M identities/260M faces

(WebFace260M) shown as Tab.1. The statistics of Web-

Face260M are illustrated in Fig.2 including date of birth,

nationality and profession. Persons in WebFace260M come

from more than 200 distinct countries/regions and more

than 500 different professions with the date of birth back

to 1846, which guarantees a great diversity in our training

data.

Cleaned WebFace42M. We perform CAST pipeline

(Sec.3) to automatically clean the noisy WebFace260M and

obtain a cleaned training set named WebFace42M, consist-

ing of 42M faces of 2M subjects. Face number in each i-

dentity varies from 3 to more than 300, and the average

face number is 21 per identity. As shown in Fig.1 and
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Figure 3: Pose (yaw), age and race of WebFace42M.

Tab.1, WebFace42M offers the largest cleaned training data

for face recognition. Compared with the MegaFace2 [38]

dataset, the proposed WebFace42M includes 3 times more

identities (2M vs. 672K), and near 10 times more im-

ages (42M vs. 4.7M). Compared with the widely used

MS1M [21], our training set is 20 times (2M vs. 100K)

and 4 times (42M vs. 10M) more in terms of # identities

and # photos. According to [64], there are more than 30%

and 50% noises in MegaFace2 and MS1M, while noise ra-

tio of WebFace42M is lower than 10% (similar to CASIA-

WebFace [84]) based on our sampling estimation. With

such a large data size, we take a significant step towards

closing the data gap between academia and industry.

Face attributes on WebFace42M. We further provide 7

face attribute annotations for WebFace42M, including pose,

age, race, gender, hat, glass, and mask. Fig.3 presents the

distribution of our cleaned training data in different aspects.

WebFace42M covers a large range of poses (Fig.3(a)), ages

(Fig.3(b)) and most major races in the world (Fig.3(c)).

3. Cleaning Automatically by Self-Training

Since the images downloaded from the web are consid-

erably noisy, it is necessary to perform a cleaning step to

obtain high-quality training data. Original MS1M [21] does

not perform any dataset cleaning, resulting in near 50%

noise ratio, and significantly degrades the performance of

the trained models. VGGFace [41], VGGFace2 [8] and

IMDB-Face [64] adopt semi-automatic or manual clean-

ing pipelines, which require expensive labor efforts. It

becomes challenging to scale up the current annotation

size to even more identities. Although the purification in

MegaFace2 [38] is automatic, its procedure is complicat-

ed and there are considerably more than 30 % noises [64].

Another relevant exploration is to cluster faces via unsuper-

vised approaches [40, 35, 51] and supervised graph-based

algorithm [85, 82, 81, 20, 72]. However, these methods as-

sume the whole dataset is clean, which is not suitable for

the extremely noisy WebFace260M.

Recently, self-training [77, 79, 42, 43], a standard ap-

proach in semi-supervised learning [48, 83], is explored to

significantly boost the performance of image classification.

Different from close-set ImageNet classification [46], di-

rectly generating pseudo labels on open-set face recogni-
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Figure 4: The proposed Cleaning Automatically by Self-Training (CAST).

Firstly, an initial teacher trained with MS1MV2 is utilized to clean Web-

Face260M. Then a student model is trained on cleaned WebFace data. The

CAST is performed by switching the student as the teacher until high-

quality 42M faces are obtained. Every intra-class and inter-class cleaning

is conducted on initial WebFace260M utilizing different teacher model.

tion is impractical. Considering this inherent limitation, we

carefully design the pipeline of Cleaning Automatically by

Self-Training (CAST). Our first insight is performing self-

training on open-set face recognition data, which is a scal-

able and efficient cleaning approach. Secondly, we find em-

bedding feature matters in cleaning large-scale noisy faces.

The overall CAST framework is shown in Fig.4. Follow-

ing the self-training pipeline, (1) a teacher model (ResNet-

100 [23], ArcFace [12]) is trained with the public dataset

(MS1MV2 [12]) to clean the original 260M images, which

mainly consists of intra-class and inter-class cleaning. (2)

A student model (also ResNet-100, ArcFace) is trained on

cleaned images from (1). Since the data size is much larg-

er, this student generalizes better than the teacher. (3) We

iterate this process by switching the student as the teacher

until high-quality 42M faces are obtained. It is worth not-

ing that each intra and inter class cleaning is conducted on

initial WebFace260M by different teacher model.

Intra-class and inter-class cleaning. Since WebFace260M

contains various noises such as outliers in a folder and iden-

tity overlaps between folders, it is impractical to perform

unsupervised or supervised clustering on the whole dataset.

Based on the observation that the image search results from

Google are sorted by relevance and there is always a domi-

nant subject in each search, the initial folder structure pro-

vides strong priors to guide the cleaning strategy: one folder

contains a dominant subject and different folders may con-

tain considerable overlapped identities.

Following these priors, we perform dataset cleaning by

a two-step procedure: Firstly, face clustering is parallel-

ly conducted in 4M folders (subjects) to select each dom-

inant identity. Specifically, for each face in a folder, 512-

dimensional embedding feature is extracted by the teacher

model, and then DBSCAN [15] is utilized to cluster faces

in this folder. Only largest cluster (more than 2 faces) in

each fold is reserved. We also investigate other different

designs of intra-class cleaning including GCN-D [82] and

GCN-V [81] in Sec.5.4. Secondly, we compute the feature

center of each subject to perform inter-class cleaning. Two

folders are merged if their cosine similarity is higher than

0.7, and the folder containing fewer faces would be deleted
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Figure 5: Inter and intra class similarity distributions during different

stages. Since initial folders are very noisy, score distributions are severely

overlapped. Cleaner training set is obtained after more iterations. 100K

folders are randomly selected here for showing the statistic changes during

iterations.

Stages # Identities # Faces

Collect name list and images 4,073,509 265,777,598

Face pre-processing 4,008,130 260,890,076

First iteration
Intra-class 3,341,761 61,792,387

Inter-class 2,437,140 50,672,354

Second iteration
Intra-class 3,027,814 60,274,892

Inter-class 2,176,427 47,352,741

Third iteration
Intra-class 2,878,886 58,155,345

Inter-class 2,070,870 46,220,417

Remove duplicates 2,070,870 43,977,802

Remove test set overlaps 2,059,906 42,474,558

Table 2: The # identities and # images statistics during different stages.

when the cosine similarity is between 0.5 and 0.7.

The effectiveness of the above intra-class and inter-class

cleaning heavily depends on the quality of the embedding

feature, which is guaranteed by the proposed self-training

pipeline. The ArcFace model trained on MS1MV2 with

ResNet-100 provides a good initial embedding feature to

perform first round cleaning for WebFace260M. Then, this

feature is significantly enhanced with more training data in

later iterations. Fig.5 illustrates the score distribution dur-

ing different stages of CAST, which indicates cleaner train-

ing set after more iterations. Furthermore, ablation study in

Tab.7 also validates the effectiveness of CAST pipeline. It

is worth noting that the proposed CAST pipeline is compat-

ible with any intra-class and inter-class strategies.

Remove duplicates and test set overlaps. After CAST,

duplicates of each subject are removed when their cosine

similarity is higher than 0.95. Furthermore, the feature cen-

ter of each subject is compared with popular benchmarks

(e.g. LFW families [26, 88, 63], FaceScrub [39], IJB-C [36]

etc.) and the proposed test set in Sec.4.2, and overlaps are

removed if the cosine similarity is higher than 0.7.

Dataset statistics. The statistics of # identities and # im-

ages during different stages are shown in Tab.2. After face

pre-processing for downloaded images, there are 4,008,130

identities and 260,890,076 faces (WebFace260M). The face

set becomes cleaner under more CAST iterations, which

results in fewer identities and faces. Finally, we obtain

2,059,906 identities and 42,474,558 faces (WebFace42M)

after removing duplicates and test set overlaps.
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4. FRUITS Protocol

4.1. Evaluation Protocol

Popular evaluation protocols for face recognition main-

ly target the pursuit of accuracy. For example, CFP [49],

AgeDB [37], CALFW [88] and CPLFW [63] evaluate the

verification accuracy under different intra-class variations

(e.g. pose and age). MegaFace [29] and IJB-C [36] serve

for both accuracy of large-scale face verification and identi-

fication. YTF [75] and IQIYI-Video [34] compare the accu-

racy of video-based verification. Different model ensemble

and post-processing [50] could be adopted for higher per-

formance under these protocols. However, face recognition

in real-world application scenarios is always restricted by

inference time.

Recently, lightweight face recognition challenge [13]

takes a step toward this goal by constraining the FLOPs and

model size of submissions. Since different neural network

architectures can be quite different in terms of real infer-

ence times, this protocol is not a straightforward solution.

Furthermore, it does not consider face detection and align-

ment, which are prerequisite components in most modern

face recognition systems. To the best of our knowledge,

NIST-FRVT [2] is the only benchmark employing the time-

constrained protocol. However, strict submission policy

(participants can only send one submission every four cal-

endar months) hinders researchers to freely evaluate their

algorithms.

In this paper, we design the Face Recognition Under In-

ference Time conStraint (FRUITS) protocol, which enables

academia to comprehensively evaluate their face matcher-

s. Referring to [2], inference time is measured on a single

core of an Intel Xeon CPU E5-2630-v4@2.20GHz proces-

sor. Considering different application scenarios, FRUITS

protocol sets a series of tracks:

FRUITS-100: The whole face recognition system must dis-

tinguish image pairs within 100 milliseconds, including pre-

processing (e.g. face detection and alignment), feature em-

bedding for recognition, and matching. FRUITS-100 track

targets on evaluating lightweight face recognition system

which can be deployed on mobile devices.

FRUITS-500: This track follows FRUITS-100 setting, ex-

cept that time constraint is increased to 500 milliseconds.

This track aims to evaluate modern and popular networks

deployed in the local surveillance system.

FRUITS-1000: Following NIST-FRVT, FRUITS-1000

adopts time constraint of 1000 milliseconds and aims to

compare capable models performed on clouds.

4.2. Test Set

Since public evaluations are most saturated and may con-

tain noise, we manually construct an elaborated test set for

FRUITS. It is well known that recognizing strangers, es-

Attributes # Id. # Faces # Impostor # Genuine

All 2,225 38,578 743,683,994 427,759

Age
Cross-age-10 - - 374,849,719 109,350

Cross-age-20 - - 196,770,680 27,056

Race

Caucasian 997 17,462 76,747,746 138,454

East Asian 647 12,401 20,384,596 60,219

African 441 6,395 2,666,162 23,878

Others 140 2,320 - -

Gender
Male 1,370 22,846 260,724,139 234,296

Female 855 15,732 123,546,583 193,463

Scenarios

Controlled - 20,446 208,876,619 132,616

Wild - 18,132 164,250,414 125,232

Cross-scene - - 370,556,961 169,911

Table 3: The statistics of our test set. - means corresponding statistics or

comparisons are omitted.

pecially when they are similar-looking, is a difficult task

even for experienced vision researchers. Therefore, our

multi-ethnic annotators only select their familiar celebrities,

which ensure the high-quality of the test set. Besides, an-

notators are encouraged to gather attribute-balanced faces,

and recognition models are introduced to guide hard sam-

ple collection. The statistics of the final test set are listed

in Tab.3. In total, there are 38,578 faces of 2,225 identities.

Rich attributes (e.g. age, race, gender, controlled or wild)

are accurately annotated.

4.3. Metrics

Based on the proposed FRUITS protocol and test set, we

perform 1:1 face verification across various attributes. Tab.3

shows numbers of imposter and genuine in different veri-

fication settings. All means impostors are paired without

attention to any attribute, while later comparisons are con-

ducted on age, race, gender and scenario subsets. Cross-age

refers to cross-age (more than 10 and 20 years) verification,

while Cross-scene means pairs are compared between con-

trolled and wild settings. Different algorithms are measured

on False Non-Match Rate (FNMR) [2], which is defined as

the proportion of mated comparisons below a threshold set

to achieve the False Match Rate (FMR) specified. FMR

is the proportion of impostor comparisons at or above that

threshold. Lower FNMR at the same FMR is better.

5. Experiments of Million-level Recognition

5.1. Implementation Details

In order to fairly evaluate the performance of different

face recognition models, we reproduce representative algo-

rithms (i.e. CosFace [68], ArcFace [12] and CurricularFace

[27]) in one Gluon codebase with the hyper-parameters re-

ferred to the original papers. Default batch size per GPU is

set as 64 unless otherwise indicated. Learning rate is set as

0.05 for a single node (8 GPUs), and follows the linear scal-

ing rule [19] for the training on multiple nodes (i.e. 0.05×#

machines). We decrease the learning rate by 0.1× at 8, 12,

and 16 epochs, and stop at 20 epochs for all models. During
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training, we only adopt the flip data augmentation.

5.2. Distributed Training

When using the large-scale WebFace42M as the train-

ing data and computationally demanding backbones as the

embedding networks, the model training can take several

weeks on one machine. Such a long training time makes

it difficult to efficiently perform experiments. Inspired by

the distributed optimization on ImageNet [19], we appor-

tion the workload of model training to clusters. To this end,

parallel on both feature X and center W , mixed-precision

(FP16) and large-batch training are adopted in this paper.

Speed and performance of our distributed training sys-

tem are illustrated in Tab.4 and Fig.6. Parallelization on

both feature X and center W as well as mixed-precision

(FP16) significantly reduce the consumption of GPU mem-

ory and speed up the training process, while similar perfor-

mance can be achieved. Equipped with 8 nodes (64 GPUs),

the training speed is scaled to 12K samples/s and 11K sam-

ples/s on WebFace4M (10% data) and WebFace12M (30%

data), respectively. The corresponding training time is on-

ly 2 hours and 6 hours. Furthermore, the scaling efficiency

of our training system is above 80% when applied to large-

scale WebFace42M on 32 nodes (256 GPUs). Therefore, we

can reduce the training time of the ResNet-100 model from

233 hours (1 node) to 9 hours (32 nodes) with comparable

performance.

Data B×G×M FP32/16 Parallel Speed Time IJB-C

10%

32×8×1 FP32 X (7913) 0.6K 39h 96.67

64×8×1 FP32 X W (7521) 0.9K 26h 96.83

64×8×1 FP16 X (7551) 1K 23h 96.80

64×8×1 FP16 X W (7182) 1.8K 13h 96.78

64×8×4 FP16 X W (7125) 6.3K 4h 96.73

64×8×8 FP16 X W (7119) 12.4K 2h 96.77

30%

64×8×1 FP16 X W (8901) 1.7K 41h 97.41

64×8×4 FP16 X W (8519) 5.5K 13h 97.50

64×8×8 FP16 X W (8455) 11.3K 6h 97.47

100%

32×8×1 FP16 X W (10503) 1K 233h 97.71

32×8×8 FP16 X W (8359) 6.8K 34h 97.65

32×8×16 FP16 X W (8297) 12.9K 18h 97.74

32×8×32 FP16 X W (8221) 25.3K 9h 97.70

Table 4: Speed and performance comparison of distributed training. Arc-

Face using ResNet-100 is adopted. B, G and M refer to batch size per GPU,

# GPUs per machine, and # machines. X and W mean feature and center,

and numbers in bracket are the GPU memory usage (MB). Performance is

reported on IJB-C (TAR@FAR=1e-4).

5.3. Comparisons of Training Data

For comprehensively analysing the influence of training

data, the proposed WebFace42M is compared with pub-

lic counterparts including MS1M families [21, 14, 12, 1],

MegaFace2 [38] and IMDB-Face [64]. 10% (WebFace4M)

and 30% (WebFace12M) random selection of our full data

are also employed for further analysing of the training da-

ta. The statistics of different training sets are illustrated in

Tab.1. Evaluation sets used in this experiment include pop-

ular verification sets (e.g. LFW [26], CFP-FP [49], CPLFW
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Figure 6: Speed and performance of our distributed training system. The

proposed system can almost linearly accelerate the training with compara-

ble performance. 100% data (WebFace42M) is used in these experiments.
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Figure 7: Performance of ArcFace models (ResNet-100) trained on the

WebFace envelopes counterparts trained on the public training data.

[63], AgeDB [37] and CALFW [88]), RFW [70], MegaFace

[38], IJB-C [36] and our test set.

As we can see from Tab.5 and Fig.7, the proposed Web-

Face42M breaks the bottleneck of training data for deep

face recognition across various loss functions and test sets.

Specifically, WebFace42M reduces relative 40% error rate

on the challenging IJB-C dataset compared with MS1MV2,

boosting TAR from 96.03% to 97.70% @10-4 FAR. Along

with the increment of data scale (i.e. 10%, 30%, and 100%),

there exists a consistent improvement in performance as ob-

served in Fig.7. On our test set, the relative promotion

is near 70% when trained on WebFace42M. Impressively,

the models trained on 10% data, WebFace4M, achieve su-

perior performance compared to models trained on MS1M

families and MegaFace2, which include even more # faces.

Undisputedly, the training data comparison confirms the ef-

fectiveness and necessity of our WebFace42M in levelling

playing field for million-scale face recognition.

Besides reporting the results of ResNet-100, we also

train ArcFace models by using a smaller network, ResNet-

14, on different portions of our data (i.e. 10%, 30% and

100%). As given in Tab.6, there is also a consistent per-

formance gain for ResNet-14 when more training data are

progressively employed. Therefore, the proposed Web-

Face42M is not only beneficial to the large model (e.g.

ResNet-100) but also valuable for the lightweight model.

5.4. Comparisons of Data Cleaning

As shown in Tab.7, the CAST pipeline is compared with

other cleaning strategies on the original MS1M [21] and

WebFace260M. Specifically, for MS1M results, the ini-
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Data Loss Pairs RFW Mega IJB-C Our test ↓

MS1M

CosFace 95.69 98.09 96.21 92.96 26.87

ArcFace 95.53 97.64 97.67 93.45 19.47

Curricular 95.71 98.12 96.86 92.99 33.14

MS1M-IBUG

CosFace 95.67 97.62 97.33 94.35 6.36

ArcFace 95.49 97.78 97.27 94.57 7.05

Curricular 95.71 97.86 97.19 94.72 7.13

MS1MV2

CosFace 97.05 98.85 98.30 96.01 4.49

ArcFace 97.10 98.98 98.40 96.03 5.08

Curricular 97.23 99.02 98.46 96.21 4.95

MS1M-Glint

CosFace 95.99 99.59 98.60 96.15 6.11

ArcFace 95.81 99.60 98.48 96.24 6.66

Curricular 96.41 99.65 98.57 96.31 6.93

MegaFace2

CosFace 92.52 88.90 86.62 87.75 45.90

ArcFace 93.18 89.45 88.28 89.35 41.58

Curricular 93.40 90.06 88.32 90.11 41.97

IMDB-Face

CosFace 96.41 93.80 94.03 93.96 16.73

ArcFace 96.40 93.08 93.48 93.37 19.07

Curricular 96.62 94.11 93.63 94.12 19.23

WebFace4M

CosFace 97.37 98.16 97.59 96.86 4.43

ArcFace 97.39 98.14 97.60 96.77 4.95

Curricular 97.40 98.14 97.94 97.02 4.33

WebFace12M

CosFace 97.61 99.15 98.66 97.41 2.16

ArcFace 97.66 99.08 98.82 97.47 2.34

Curricular 97.68 99.18 98.75 97.51 2.44

WebFace42M

CosFace 97.76 99.41 99.02 97.68 1.72

ArcFace 97.65 99.33 99.02 97.70 1.58

Curricular 97.68 99.39 99.11 97.76 1.63

Table 5: Performance (%) of different training data. ResNet-100 backbone

without flip test is adopted. Pairs refers to average accuracy on [26, 49,

37, 88, 63], RFW refers to average accuracy on [70], Mega refers to rank-1

identification on [29], IJB-C is TAR@FAR=1e-4 on [36]. Last column is

FNMR@FMR=1e-5 on All pairs comparison of our test set.

Training data WebFace4M WebFace12M WebFace42M

IJB-C 93.13 93.92 94.22

Table 6: Performance of ArcFace models trained with ResNet-14 on dif-

ferent portions of WebFace42M. TAR@FAR=1e-4 on IJB-C is reported.

tial teacher model is trained on IMDB-Face [64] by using

ResNet-100 and ArcFace. Then, CAST is conducted on

the noisy MS1M following Sec.3. After steps of iteration,

our fully automatic cleaning strategy provides purified da-

ta for model training, outperforming semi-automatic meth-

ods used in [14, 12, 1]. Compared with the most recent

GCN-based cleaning [87], the data cleaned by the CAST

also achieves higher performance.

Iterations of CAST. Tab.7 also shows the increasing data

purity after more iterations in MS1M and WebFace260M.

The accuracy gradually increases from 1st to 3rd iteration,

while 4th iteration shows saturated performance. Therefore,

we set the iteration number as 3 for CAST.

Intra-class Cleaning. In this experiment, we compare d-

ifferent intra-class cleaning methods under the framework

of CAST. Both unsupervised methods (e.g. K-means [35]

and DBSCAN [15]) and supervised methods (e.g. GCN-D

[82] and GCN-V [81]) are explored to find the dominant

subject in each noisy folder. As shown in Tab.8, DBSCAN

achieves 96.55% TAR@FAR=1e-4 on IJB-C, significantly

outperforming K-Means (96.03%) and slightly surpassing

the supervised GCN-based strategies (96.48% for GCN-D

Data # Id # Face Pairs MegaFace IJB-C

MS1M 100K 10M 95.53 97.67 93.45

MS1M-IBUG 85K 3.8M 95.49 97.27 94.57

MS1MV2 85K 5.8M 97.10 98.40 96.03

MS1M-Glint 87K 3.9M 95.81 98.48 96.24

MS1M-GCN [87] - - 96.51 - -

MS1M by CAST-1 94K 6.3M 95.37 97.93 94.31

MS1M by CAST-2 92K 5.5M 97.08 98.47 95.90

MS1M by CAST-3 91K 4.9M 97.42 98.61 96.55

MS1M by CAST-4 91K 4.9M 97.49 98.57 96.52

WebFace by CAST-1 2.4M 46M 97.42 98.64 97.28

WebFace by CAST-2 2.1M 43M 97.53 98.98 97.51

WebFace by CAST-3 2M 42M 97.65 99.02 97.70

WebFace by CAST-4 2M 42M 97.69 99.08 97.66

Table 7: Comparisons of CAST and other data cleaning pipelines. ResNet-

100 using the ArcFace loss is adopted here. For our WebFace, different

iterations are compared. CAST-1 means the first-round iteration.

Data # Id # Face Pairs MegaFace IJB-C

K-Means 93K 5.2M 95.17 97.31 96.03

DBSCAN 91K 4.9M 97.42 98.61 96.55

GCN-D 86K 4.4M 96.56 98.55 96.48

GCN-V 82K 4.5M 96.93 98.29 96.42

Table 8: Comparisons of different intra-class cleaning methods for MS1M.

ResNet-100 using the ArcFace loss is adopted here.

and 96.42% for GCN-V). As the GCN-based strategies can

be sub-optimal for the extremely noisy folders, we finally

select DBSCAN [15] as our intra-class cleaning method.

5.5. Baselines under FRUITS Protocols

In this section, we set up a series of baselines under the

proposed FRUITS protocols. In Tab.9, we illustrate dif-

ferent face recognition systems (including different module

settings of face detection, alignment, feature embedding)

and their inference time. In our baselines, representative

network architectures are explored, covering MobileNet

[24, 9], EfficientNet [61], AttentionNet [65], ResNet [23],

SENet [25], ResNeXt [78] and RegNet [44] families. All

the models are trained on WebFace42M with ArcFace.

Due to strict time limitation, models constrained by

FRUITS-100 can only adopt lightweight architectures, in-

cluding RetinaFace-MobileNet-0.25 [11] for face detec-

tion and alignment, ResNet-14, MobileFaceNet (Flip),

EfficientNet-B0 and RegNet-800MF for face feature extrac-

tion. FNMR on All pairs and analysis of attribute bias are

shown in Fig.8(a) and Fig.8(b). Because of the weak detec-

tion and recognition modules, the best baseline (RegNet-

800MF) only obtains 5.88% FNMR@FMR=1e-5 (lower is

better). Therefore, there leaves a substantial room for future

improvement under the FRUITS-100 protocol.

For the FRUITS-500 protocol, we can employ more

capable modern networks, such as RetinaFace-ResNet-50

[11] for pre-processing, and ResNet-100, ResNet-50 (Flip),

SENet-50, ResNeXt-100, RegNet-8GF for feature embed-

ding. As shown in Fig.8(c) and Fig.8(d), ResNet-100 ex-

hibits best overall performance in unbiased face verifica-
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Protocol Det&Align Embedding FLOPs Params Time

FRUITS

-100

M-0.25 ResNet-14 2.1G 19.2M 97ms

M-0.25 MobileFaceNet (Flip) 230.3M 1.2M 65ms

M-0.25 EfficientNet-B0 394.2M 11.6M 94ms

M-0.25 RegNet-800MF 831.0M 23.4M 89ms

FRUITS

-500

R-50 ResNet-100 12.1G 65.2M 481ms

R-50 ResNet-50 (Flip) 6.3G 43.6M 492ms

R-50 SENet-50 6.3G 43.8M 374ms

R-50 ResNeXt-100 8.2G 56.2M 411ms

R-50 RegNet-8GF 8.0G 82.7M 429ms

FRUITS

-1000

R-50 ResNet-100 (Flip) 12.1G 65.2M 826ms

R-50 ResNet-200 23.9G 109.3M 892ms

R-50 SENet-152 18.1G 101.0M 792ms

R-50 AttentionNet-152 14.8G 61.3M 785ms

R-50 RegNet-16GF 16.0G 103.7M 772ms

Table 9: Settings and inference time of baselines. Loose cropped test im-

ages are resized to 224 × 224 for joint detection and alignment. M-0.25

and R-50 refer to RetinaFace using MobileNet-0.25 (23ms) and ResNet-50

(272ms) as the backbones.

Rank entries Visa Mugshot VisaBorder Border Wild

1 deepglint 0.0027 0.0033 0.0043 0.0084 0.0301

2 visionlabs 0.0025 0.0029 0.0035 0.0064 0.0306

3 ours 0.0034 0.0028 0.0046 0.0088 0.0303

4 dahua 0.0046 0.0049 0.0046 0.0076 0.0300

5 cib 0.0061 0.0041 0.0048 0.0578 0.0302

Table 10: Results on NIST-FRVT. Our Arcface model using ResNet-200

is trained on WebFace42M. FNMR at corresponding FMR is reported.

tion. ResNet-50 with flip testing achieves lowest FNMR

according to the attribute indicators of Wild and Male, while

ResNeXt ranks first in the Cross-scene track.

Recognition models under the FRUITS-1000 proto-

col can be more powerful, therefore we explore ResNet-

100 (Flip), ResNet-200, SENet-152, AttentionNet-152 and

RegNet-16GF for face feature embedding. As shown in

Fig.8(e) and Fig.8(f), ResNet-200 performs best in face ver-

ification and wins five attribute comparisons, while SENet-

152 and AttentionNet-152 achieve three and two first-place

respectively, according to the attribute indicator. Compared

with lightweight FRUITS-100 track, performance of differ-

ent large models are much closer.

5.6. Results on NIST­FRVT

Finally, we report the submission to the NIST-FRVT.

Following the settings of FRUITS-1000, our system is built

based on RetinaFace-ResNet-50 for detection and align-

ment, and ArcFace-ResNet-200 trained on WebFace42M

for feature embedding. The inference is accelerated by

OpenVINO [6] and the flip test is adopted. The final in-

ference time is near 1300 milliseconds according to the

NIST-FRVT report, meeting the latest 1500 milliseconds

limitation. Tab.10 illustrates top-ranking entries measured

by FNMR across five tracks. Our model trained on the

WebFace42M achieves overall 3rd among 430 submission-

s, showing impressive performance across different tracks.

Considering hundreds of company entries to NIST-FRVT,

the WebFace42M takes a significant step towards closing

the data gap between academia and industry.

(a) FMR-FNMR for FRUITS-100 (b) Attributes for FRUITS-100

(c) FMR-FNMR for FRUITS-500 (d) Attributes for FRUITS-500

(e) FMR-FNMR for FRUITS-1000 (f) Attributes for FRUITS-1000

Figure 8: Comprehensive performance comparisons of different models

under the proposed FRUITS protocols. The right part shows the attribute

plots under FNMR@FMR=1e-5, which is normalized to 0.5-1.0 for better

visualization (outer is better).

6. Discussion and Conclusion

Discussion WebFace260M is extremely large and contains

great diversity. We have considered the bias in the test set

construction, metrics and baselines results. Sampling bal-

anced data and recent de-bias researches [70, 69, 18, 17]

may alleviate this problem to some extent. For the ethics of

gathering dataset, detailed rules are listed in our website.

Conclusion In this paper, we dive into million-scale face

recognition, contributing a high-quality training data with

42M images of 2M identities by using automatic cleaning, a

test set containing rich attributes, a time-constrained evalua-

tion protocol, a distributed framework at linear acceleration,

a succession of baselines, and a final SOTA model.
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