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Abstract

Learning methods for relative camera pose estimation

have been developed largely in isolation from classical geo-

metric approaches. The question of how to integrate predic-

tions from deep neural networks (DNNs) and solutions from

geometric solvers, such as the 5-point algorithm [37], has

as yet remained under-explored. In this paper, we present a

novel framework that involves probabilistic fusion between

the two families of predictions during network training, with

a view to leveraging their complementary benefits in a learn-

able way. The fusion is achieved by learning the DNN un-

certainty under explicit guidance by the geometric uncer-

tainty, thereby learning to take into account the geometric

solution in relation to the DNN prediction. Our network

features a self-attention graph neural network, which drives

the learning by enforcing strong interactions between dif-

ferent correspondences and potentially modeling complex

relationships between points. We propose motion parme-

terizations suitable for learning and show that our method

achieves state-of-the-art performance on the challenging

DeMoN [61] and ScanNet [8] datasets. While we focus

on relative pose, we envision that our pipeline is broadly

applicable for fusing classical geometry and deep learning.

1. Introduction

Estimating the relative pose between two cameras is a

fundamental problem in computer vision, which forms the

backbone of structure from motion (SFM) methods. Geomet-

ric approaches based on the 5-point method [37] and bundle

adjustment (BA) [59] are well-studied, while recent meth-

ods based on deep neural networks (DNNs) also achieve

promising results [61, 7, 56, 65]. But the question of how

the two families of methods may be combined to trade-off

their relative benefits has as yet remained under-explored,

which is the subject of our study in this paper.

The behavior of geometric methods [18] is theoretically

characterizable under a wide range of camera motions. But
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Figure 1. Geometric-DNN relative pose fusion framework. The

DNN pose prediction is fused with the geometric prediction during

training, based on their respective prediction uncertainty.

such understanding does not always guarantee good per-

formance. While high accuracy is obtained in situations

with strong perspective effects, performance may degrade

due to lack of correspondences, planar degeneracy and bas-

relief ambiguity [9], to name a few. On the other hand,

learning-based methods may avoid the above issues by learn-

ing sophisticated priors that relate images to camera motion,

but can suffer from poor generalization outside the training

domain and not be amenable to interpretation.

This paper proposes an uncertainty based probabilistic

framework to fuse geometric and DNN predictions, as illus-

trated in Fig. 1, with the aim of overcoming the limitations of

either approach. The underlying intuition is that the geomet-

ric solution may be trusted more due to its well-understood

rationale if it is highly confident, but the network should play

a role in driving the solution closer to the true one in geo-

metrically ill-conditioned scenarios. We obtain geometric

uncertainty using the Jacobian of the error functions, serving

as an indicator of the quality of the solution, while we design

a network to additionally predict the uncertainty associated

with camera pose estimation. The uncertainty so obtained

may be interpreted as (co)variance of a Gaussian distribu-

tion, which allows us to fuse the two predictions using Bayes’
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rule. We highlight that the geometric solution and the fusion

step are both tightly integrated into our end-to-end trainable

pipeline, hence enforcing strong interaction between DNNs

and the geometric method during training.

Our relative pose learning framework is the first of its

kind in terms of forcing the network to give an account of

the classical geometric solution along with its uncertainty

in a principled way, during training. The network can also

be thought of as a means to learn to improve the geometric

solution such that the final fused one is closer to the ground

truth. Further, the geometric guidance also distinguishes

our uncertainty learning from previous works (e.g. [27]) that

learn standard aleatoric uncertainty [26]. More importantly,

our learned uncertainty may be considered as geometrically

calibrated, in the sense that its numerical range can readily

match to that of the geometric uncertainty and permits a

direct fusion of the two during training.

In terms of network architecture, inspired by SuperGlue

[46], we find a self-attention [62] graph neural network

(GNN) to be effective at learning from keypoint correspon-

dences. This is probably since self-attention permits strong

interactions between correspondences, which is an essential

procedure to determine the relative pose. We also illustrate

that even both translation direction and rotation lie on a

manifold, fusion is still feasible by careful choice of parame-

terization. We term our uncertainty-aware fusion framework

as UA-Fusion. UA-Fusion is extensively validated by achiev-

ing state-of-the-art performance, especially in challenging

indoor datasets with unconstrained motions.

In summary, our contributions include:

• A principled fusion framework to leverage the best of

both classical geometric solvers and DNNs for relative

pose estimation.

• A self-attention graph neural network whose attention

mechanism drives the learning in our fusion pipeline.

• Superior results on benchmark DeMoN dataset [61] as

well as in cross-dataset ScanNet experiments [8].

2. Related Works

Geometric methods Due to its essential role in SFM [48,

75, 77], a wide variety of algorithms have been pro-

posed for the relative pose estimation problem. These

could be classified into algebra-based minimal/nonminimal

solvers [34, 37, 19, 32, 29] and optimization-based nonlin-

ear methods [28, 67, 5, 12]. In addition, some methods are

specially tailored to specific types of camera setup or motion

prior [71, 21, 76, 16, 53, 15, 14]. Our framework does not

require the geometric methods to be differentiable, and in

principle could work with any approaches.

Learning methods Deep learning has recently been ap-

plied to different problems in SFM e.g. [45, 47, 58, 55, 78].

In particular, both supervised [61, 7, 56, 65] and unsuper-

vised [73, 64, 35, 3, 72] methods for relative pose estimation

are proposed. Despite the promising performance, such

methods are largely developed in isolation of geometric

methods. Although many works do borrow ideas from ge-

ometric methods to guide the network designing, (e.g. the

spirit of bundle adjustment in BA-Net [56], LS-Net [7] and

DeepSfM [65]), the geometric solution itself is not explicitly

leveraged in network training as we do. Note that while we

validate our concepts by learning the camera pose alone, our

idea is amenable to learning with depth as well.

Geometric uncertainty In addition to the well-behaved

camera pose estimation, geometric methods also offer a nat-

ural way to measure the uncertainty [11] of the predictions

without requiring access to the ground truth. This is achieved

by relating the Jacobian of the error landscape to the covari-

ance of Gaussian distributions. The uncertainty so obtained

has been extensively studied in photometric computer vi-

sion [11]. It has also found applicability in a wide variety of

tasks, such as RGB-D SLAM [10], radial distortion model

selection [42] in SFM, skeletal images selection for efficient

SFM [51], height map fusion [79], 3D reconstruction [17],

and camera calibration [39]. Polic et al. recently make ef-

forts [41, 40] towards efficient uncertainty computation in

large-scale 3D reconstruction. Despite the prevalence of the

geometric uncertainty, it is however not yet fully exploited

when it comes to the context of deep learning. Our work

makes contributions towards bridging this gap.

Learning uncertainty Uncertainty learning, as a means to-

wards more interpretable deep learning models, has emerged

as an important topic recently [26]. Quantifying uncertainty

of network predictions is highly desirable in many appli-

cations, such as camera relocalization [25], depth uncer-

tainty [4] and photometric uncertainty [68] in SLAM, and

optical flow estimation [22]. In the context of SFM, Klodt

and Vedaldi [27] utilize uncertainty learning to handle the

varying reliability of geometric SFM when applied as refer-

ence ground truth to supervise the SFM learning. Our paper

is close to but distinct from this work since our goal lies in

the fusion between the geometric and learned SFM with both

the geometric and learned uncertainty. Laidlow et al. [30, 31]

put forth to fuse the depth maps obtained from learning and

geometric methods, sharing similar spirit to our pose fusion

framework. Yet, their uncertainty is learned independent

from the geometric solution, and requires a non-trivial post-

processing fusion step. In contrast, our UA-Fusion learns

uncertainty by tightly integrating geometric guidance and

fusion into network training.

3. Method

Tradeoffs between geometric and learned pose We start

by noting intuition from geometric pose estimation, which

may guide regimes where interesting trade-offs may be ob-
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served for our uncertainty-based fusion.

• Critical keypoint configurations: Geometric solvers suffer

when correspondences are scarce, for example, in texture-

less regions. Some common keypoint configurations may

lead to ambiguous solutions or ill-posed objectives, for ex-

ample, when keypoints lie on a plane [18]. We expect that

our geometric uncertainty will lend greater importance to

DNN priors in such situations.

• Critical motions: Bas-relief ambiguity [9, 54] may arise

when the camera undergoes sideways motion due to the

resemblance between translational and rotational flow un-

der limited field of view, leading to a less accurate pose

estimation. Forward motion also poses challenges to geo-

metric SFM, partially due to small feature movement near

the focus of expansion and partially due to severe local

minima in the least squares error landscape [63, 38].

• Rotation and translation: Translation estimates are known

to be more sensitive than rotation, leading to issues such

as forward motion bias in linear methods if proper nor-

malization is not carried out [37, 57]. Thus, one may

expect rotation to be more reliable in the geometric so-

lution, while the DNN may play a more significant role

for translation. We will show that our uncertainty-based

framework handles this in a principled way.

3.1. Background: Geometric Uncertainty

Geometric solution Formally, we are interested in solv-

ing the relative camera pose between two cameras C1 and

C2 with known intrinsics. We assume C1 as the reference

with pose denoted as P1 = [I 0] and wish to estimate the

relative camera pose of C2, denoted as P2 = [R t], where

R ∈ SO(3) and t ∈ S2 denote the relative rotation and

translation direction, respectively. Suppose both cameras

are viewing a set of common 3D points Xi, i = 1, 2, ..., n,

each yielding a pair of 2D correspondences x1
i and x2

i in

the image plane. It is well-known that a minimal set of

5-point correspondences suffices to determine the solution,

with Nister’s 5-point algorithm [37] being the standard min-

imal solver. A RANSAC procedure is usually applied to

obtain an initial solution, followed by triangulation [18] to

obtain 3D points Xi. Finally, one could refine the solu-

tion by nonlinearly minimizing the re-projection error using

bundle adjustment [59],

min
θ

∑

i

‖x1
i −π(P1,Xi))‖2+‖x2

i −π(P2,Xi))‖2, (1)

where π() denotes the standard perspective projection and

θ = {θR, θt,Xi, i = 1, 2, ...n}. θR and θt represent the

parameterizations of rotation and translation; we will come

back to their specific choice in the next section.

Geometric uncertainty In order to describe the uncer-

tainty associated with the optimum θ̂ in a probabilistic man-

ner, the distribution of θ could be approximated locally by

a Gaussian distribution N (θ|θ̂,Σ). As a first-order approx-

imation, the information matrix Λ, i.e. Σ−1, is computed

as:

Λ = J⊤(θ̂)J(θ̂), (2)

where J(θ̂) denotes the Jacobian of the nonlinear least

squares (Eq. 1) at θ̂. We remark that J(θ̂) is of full rank in

this paper, implying the absence of gauge ambiguity [11, 24].

This is attributed to the fixed camera pose of C1 as well as our

minimal parameterizations of (R, t) to be discussed shortly.

Also, we shall conduct fusion on each individual parameter

in {θR, θt} separately due to the discontinuity [74] in rep-

resentation, and we will directly work on inverse variance

for convenience. The inverse variance 1/σ2
i of a parameter

θi in {θR, θt} may be obtained by Schur complement:

1/σ2
i = Λ \ΛJ,J = Λi,i −Λi,JΛ

−1
J,JΛJ,i, (3)

where J includes the index to the remaining parameters in θ.

This step is also called S-transformation [2] that specifies the

gauge of covariance matrix [11, 42]. From the probabilistic

point of view, it is in essence the inverse variance of a con-

ditional Gaussian on θi given all the other parameters [23].

As the expert reader may have noticed, we omit the keypoint

localization uncertainty [11, 39] of x
1,2
i , for simplicity.

3.2. GeometricDNN Relative Pose Fusion

Notations Whenever ambiguity arises, we use subscript

g, d, and f to distinguish the prediction from the geometric

prediction (g), the DNN prediction prior to fusion (d), and

the fused solution (f).

Bayes fusion We conceptually treat the geometric and DNN

predictions as measurements from two different sensors and

fuse them using Bayes’ rule, akin to a Kalman filter. Specifi-

cally, given (θ̂i,g, 1/σ
2
i,g) and (θ̂i,d, 1/σ

2
i,d) as the geometric

and DNN prediction, respectively, the posterior distribution

of the motion parameter θi is [36]

P (θi|θ̂i,g, σ2
i,g, θ̂i,d, σ

2
i,d) = N (θi|θ̂i,f , σ2

i,f ), (4)

θ̂i,f =
1/σ2

i,g θ̂i,g + 1/σ2
i,d θ̂i,d

1/σ2
i,g + 1/σ2

i,d

, 1/σ2
i,f = (1/σ2

i,g+1/σ2
i,d).

(5)

The maximum-a-posterior (MAP) estimation θ̂i,f is returned

as the final fused solution, which receives supervision.

3.2.1 Neural Architecture for Probabilistic Fusion

Architecture Overview As illustrated in Fig. 2, our UA-

Fusion framework takes as input an image pair along with the

correspondences extracted by a feature matcher, for which

we use SuperGlue [46] due to its excellent performance.

The two images are stacked and passed to a ResNet [20]

architecture to extract the appearance feature. The corre-

sponding keypoint locations are first embeded into a higher-

dimensional space by a Multilayer Perceptron (MLP) and
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Figure 2. Overview of our geometric-DNN fusion network, taking two images with extracted keypoint correspondences as input. The

images and correspondences are respectively passed to the ResNet-34 and the self-attention graph network for appearance and geometric

feature extraction. The concatenated features are passed to the two-branch MLPs for estimating pose and uncertainty. This solution is then

fused with the one from the 5pt&BA method with Jacobian-based uncertainty, yielding the final prediction which receives supervision.

then feed into an attentional graph neural network to extract

the geometric feature. Afterwards, the appearance and geo-

metric features are concatenated before being passed to the

pose and the uncertainty branches, each using an MLP to pre-

dict respectively the mean and inverse variance of the under-

lying Gaussian distribution of the motion parameters. These

are then fused with the geometric solution (5pt&BA) based

on uncertainty. Note that the loss is imposed on the final

fused output, which induces gradient flows back-propagated

through the fusion, hence coupling the geometric and learn-

ing module in training.

Intuition for the Architecture While the ResNet offers

global appearance context, the graph neural network and

geometric feature encode strong geometric cues from any

available correspondences to reason about camera motion.

Further, correspondences as the sole input to the 5-point

solver and bundle adjustment have a more explicit correlation

with the uncertainty of geometric solution, allowing the

network to decide the extent to which the geometric solution

should be trusted in relation to the DNN prediction.

Self-Attention Graph Neural Network As the network

input, we stack all the correspondences (x1
i ,x

2
i ) between

the two views as x12 ∈ Rn×4, which is subsequently passed

to an MLP for embedding, yielding f (0) ∈ Rn×d, with

d = 128 being the feature dimension. Next, f (0) is passed

to four sequential message passing layers to propagate infor-

mation between all pairs of correspondences, with structure

similar to SuperGlue [46]. The message passing is best

represented as a graph, with each node containing a pair

of correspondence and edges connecting different pairs of

correspondences. Specifically, in the l-th layer, the feature

vector f l
i associated with the correspondence pair i is up-

dated as:

f l+1
i = f l

i + MLP([f l
i ,m

l
i]), (6)

where [ . , . ] indicates concatenation and ml
i denotes the

message aggregated from all the correspondences based on

the self-attention mechanism [62]. As per the standard pro-

cedure, we define the query (Ql), key (Kl) and value (V l)

as linear projections of f l, each with their own learnable pa-

rameters shared across all the correspondences. The message

ml is then computed as

ml = softmax(
QlKl⊤

√
d

)V l, (7)

The softmax is performed row-wise and ml
i is row i of ml.

The output of the last layer f4
i is passed to an MLP and

average pooling to be concatenated with the ResNet feature.

Why self-attention? First of all, the self-attention en-

courages interactions between all correspondences, which

mimics the knowledge from classical geometry that all pairs

of correspondences (n >= 5) together contribute to the

relative pose determination, necessitating the interactions

between points. More importantly, the strong representation

capability of self-attention facilitates the learning of complex

relationships among different pairs of correspondences. A

straightforward example is the spatial relation. It is known

in classical SFM [18] that two pairs of correspondences far

from each other and widely spread in the image plane pro-

vide stronger signals for motion estimation; it effectively

makes full use of the perspective effect in the field of view

and prevents the degradation of perspective to affine camera

model [18, 50]. Conversely, two pairs of correspondences

near to each other typically contribute weaker extra cues

compared to either pair alone. Hence, different pairs of cor-

respondences are not on equal footing and should be treated

differently. Indeed, we empirically observe a strong corre-

lation between the attention and the spatial distance. In a

nutshell, the self-attention enforces extensive interactions

and permits learning more complex and abstract relation-

ships among different pairs of correspondences, which we
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Figure 3. Toy-example illustration of the direct and circular fusion

on β, wherein the fusion is simply defined as averaging.

empirically observe to play a significant role in terms of

performance. More analyses will follow in the experiments.

3.2.2 Motion parameterization

It is crucial to choose the proper motion parameterizaton for

the above network, which we discuss now.

Translation We consider the properties of two distinct

parameterizations for training and fusion:

t(tx, ty, tz) =
(tx, ty, tz)

⊤

‖(tx, ty, tz)⊤‖
, (8)

t(α, β) = (cosα, sinα cosβ, sinα sinβ), (9)

where α ∈ [0, π] and β ∈ [−π, π] are constraints for unique-

ness. Since the unit-norm vector t itself is not a convenient

quantity for fusion as it lies on the S2 manifold, we seek

to fuse the parameters (tx, ty, tz) or (α, β). As the scale of

(tx, ty, tz) is indeterminate, causing gauge ambiguity and a

rank-deficient Jacobian, we opt for (α, β) as the fusion en-

tity, that is, θt = {α, β}. However, due to its circular nature,

the wrap-around of β at ±π leads to discontinuity in the rep-

resentation, which leads to training difficulties if the network

predicts β directly. To address this issue, we design the net-

work to output (tx, ty, tz) followed by unit-normalization,

then we extract (α, β) and proceed to fusion.

Circular Fusion While the fusion of α remains straight-

forward, the circular nature slightly complicates the fu-

sion of β. Ideally, a meaningful fusion is obtained only

when |βd − βg| < π, which could be achieved by letting

β̄g = βg + 2kπ with k ∈ {−1, 0, 1}. This is illustrated by

the toy example in Fig. 3, where depending upon the specific

values of βg and βd, a direct fusion of the two might yield

a solution far from both when |βd − βg| > π. This is, how-

ever, addressed by fusing βd and β̄g instead. We term this

procedure as circular fusion and β̄g as βg’s circular nearest

neighbor to βd.

Rotation We consider two minimal 3-parameter repre-

sentation of rotation—angle-axis representation and Euler

angles. The network is designed to regress the angle di-

rectly. Although this also faces discontinuity at ±π [74], it

barely poses a problem since rotations between two views

are often far from ±π (such strong rotation will quickly di-

minish the overlapping field of view). We observe similar

performance from the two representations, but opt for Euler

angels since its fusion of yaw-pitch-roll angles, denoted as

θR = {φy, φp, φr}, has a clearer geometric meaning.

Loss One could impose the loss directly on the fused angles

{θR,f ,θt,f} with a circular loss [33], or convert them back

to (R(θR,f ), t(θt,f )) and impose loss on it. All the combi-

nations perform similarly in our experiments; we choose the

following loss for marginally better performance,

L(θR,f ,θt,f ) = |t(θt,f )− t∗|1 + w|θR,f − θ̄∗

R|1, (10)

where ∗ indicates the ground truth and θ̄∗

R is θ∗

R’s circular

nearest neighbour to θR,f . w = 1.0 is a weight.

Implementation details We make use of OpenCV for the

5-point solver with RANSAC, and Ceres [1] for BA and

Jacobian computation. More discussions on the framework

and network training are in the supplementary.

4. Experiments

4.1. Dataset

DeMoN Dataset [61]. This dataset contains a large amount

of data including indoor, outdoor, and synthetic data, ex-

tracted from SUN3D [66], RGB-D [52], MVS [60, 13, 49,

48], and ShapeNet [6]. The diversity of both scenes and

motions makes the dataset challenging for SFM.

ScanNet [8]. To evaluate the generalization ability, we also

test our network on the ScanNet data. We use the testing

data extracted by [56], that consists of 2000 pairs of images

with accurate ground truth pose. The sequences are captured

indoors by hand-held cameras, making it particularly hard.

4.2. Results on DeMoN

We first compare UA-Fusion with the state-of-the-art rel-

ative pose learning methods including DeMoN [61], LS-

Net [7], BA-Net [56] and DeepSfM [65], in Tab. 1. The

error of translation (resp. rotation) is measured as the angle

between the prediction and the ground truth. First, although

SuperGlue followed by 5pt&BA produces competitive re-

sults compared to methods that learn pose directly, it can be

seen that our fusion of the geometric and DNN prediction

further boosts the performance, achieving the overall best

results. We also test UA-Fusion with SIFT as the feature

matcher, under which case ours again improves over the pure

geometric method, further validating its merits. In addition,

we test two more methods that focus on learning correspon-

dences, LGC-Net [69] and NM-Net [70], by passing their

output to 5pt&BA. We observe that the obtained accuracies

lag behind our fusion method.
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MVS Scenes11 RGB-D Sun3D

Rot. Tran. Rot. Tran. Rot. Tran. Rot. Tran.

DeMoN [61] 5.156 14.447 0.809 8.918 2.641 20.585 1.801 18.811

LS-Net [7] 4.653 11.221 4.653 8.210 1.010 22.110 1.521 14.347

BA-Net [56] 3.499 11.238 3.499 10.370 2.459 14.900 1.729 13.260

DeepSfM [65] 2.824 9.881 0.403 5.828 1.862 14.570 1.704 13.107

LGC-Net [69] 2.753 3.548 0.977 4.861 2.014 16.426 1.386 14.118

NM-Net [70] 6.628 12.595 15.717 31.477 13.444 34.212 4.393 21.091

SIFT+5pt&BA 1.313 2.555 2.062 8.125 6.895 29.457 2.516 21.925

UA-Fusion-SIFT 1.203 2.403 0.525 4.322 2.274 15.570 1.960 17.340

SuperGlue+5pt&BA 2.884 5.024 0.390 3.872 1.829 16.330 1.255 12.200

UA-Fusion 2.502 4.506 0.388 3.001 1.480 10.520 1.340 11.830

Table 1. Quantitative comparison with state-of-the-art methods on DeMoN datasets. Both translation (Tran.) and Rotation (Rot) errors

are measured in degree (◦). The lowest error in each column is bolded.
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Figure 4. Error comparison between ge-

ometric and DNN predictions.
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Figure 5. Comparison between the geometric and DNN uncertainty for each parameter

in {θt,θR}.

4.3. Analysis: Geometric vs. DNN

Since the DeMoN test set contains only 354 pairs of im-

ages, we train a model with a few training sequences (∼10k

pairs) left for testing, in order for statistically meaningful

analysis. We denote the translation and rotation error of the

geometric solution (“5pt&BA”), the plain DNN predition

prior to fusion (“DNN”), and the final fused solution (“DNN-

Fusion”) as (Et,g, ER,g), (Et,d, ER,d) and (Et,f , ER,f ).

Geometric error vs. DNN error We first study the accu-

racy against the uncertainty of the geometrical solution. We

sort the test data by the total inverse variance in translation

1/σ2
t = 1/σ2

α + 1/σ2
β , and plot the sorted Et,g, Et,d and

Et,f in the top row of Fig. 4. The curves are smoothed by

averaging over every 300 consecutive image pairs. First

observe the overall trend that Et,g decreases while 1/σ2
t in-

creases, revealing the correlation between geoemtrical error

and uncertainty. In addition, the accuracy gap between Et,g

and Et,f is increasingly large with decreasing 1/σ2
t . This

indicates a more significant role of DNNs in geometrically

uncertain scenarios; conversely, the geometrical solution is

mostly retained if it is highly confident. Further observe

the superiority of “DNN-Fusion” over “DNN”, which is ex-

pected as only “DNN-Fusion” receives direct supervision.

Another potential reason is that “DNN” likely has to contain

bias to compensate the error/bias in “5pt&BA” during fusion.

The same curve is plotted for the rotation error in the bottom

row of Fig. 4. We observe that the geometrical solution trans-

fers to the final output in most cases, probably due to the

higher stability of the rotation estimation compared to the

translation; this viewpoint has been conveyed by Nistér [37].

Geometric uncertainty vs. DNN uncertainty Next, we

visualize the uncertainty by plotting (1/σ2
α, 1/σ

2
β) sorted by

Et,g . As shown in Fig. 5(a)(b), (1/σ2
α,d, 1/σ

2
β,d) are higher

than (1/σ2
α,g, 1/σ

2
β,g) for cases with larger Et,g, and vice

verse. This implies the desired capability of “DNN” to dom-

inate the final solution when “5pt&BA” tends to fail. Simi-

larly, we present the same plot for rotation in Fig. 5(c)-(e).

Comparing the range of 1/σ2
R,g and 1/σ2

t,g, one observes

the higher confidence/stabability in the geometric rotation
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Figure 6. Comparisons of errors against (a) homography degeneracy, (b) forward

and sideway motion, and (c) correspondences.

ScanNet Rot. Tran.

DeMoN [61] 3.791 31.626

LSD-SLAM [44] 4.409 34.360

BA-Net [56] 1.587 31.005

DeepSfM [65] 1.588 30.613

SuperGlue+5pt&BA

(indoor)
1.776 20.936

UA-Fusion (indoor) 0.814 16.517

SuperGlue+5pt&BA

(outdoor)
2.519 20.470

UA-Fusion (outdoor) 0.824 17.495

Table 2. Quantitative comparisons on ScanNet.

Both indoor and outdoor SuperGlue model are

tested.

estimate than the translation. This also makes it dominate

in most cases when fused with the DNN prediction, as evi-

denced by the curves. We also note that the smoothed curves

reveal the overall trend but may overly obscure the DNN’s

impact on the rotation, thus we provide in the supplementary

more analyses in this regard.

Homography degeneracy Motion estimation may be un-

stable with correspondences that could be related by a ho-

mography. Characterizations of the algorithm’s stability in

this aspect is essential. To this end, we fit a homography

to correspondences in each image pair; the ratio of inliers,

Hratio, is used to indicate closeness to degeneracy. We

then sort image pairs by Hratio and plot the error curves

in Fig. 6(a). As can be seen, “DNN-Fusion” mostly keeps

the geometric solution in well-conditioned cases with lower

Hratio, while alleviates the degradation under higher Hratio.

Forward vs. Sideway motion We first select those image

pairs with nearly pure translational motion, and compute the

angle between translation direction and z-axis, denoted as

φforward. φforward = 0◦ and 90◦ indicate pure forward

and sideway motion, respectively. We plot the errors sorted

by φforward in Fig. 6(b). While forward motion does not

cause serious issues in our tested data, one observes increas-

ing errors while approaching pure sideway motion, which

is liable to the bas-relif ambiguity. Yet, the performance

degradation is alleviated in our fused solution.

Correspondence Finally, we plot in Fig. 6(c) the er-

rors against the number of inlier correspondences found

by “5pt&BA”. Clearly, DNNs contribute more when the

geometric accuracy drops due to lack of correspondences.

Qualitative Results We present here three qualitative ex-

amples. Fig. 8(a) represents a geometrically challenging case

since all the correspondences nearly lie in a frontal plane

with small depth variations, leading to weak perspective ef-

fect and potential degeneracy. Similarly, Fig. 8(b) shows an

ill-conditioned instance with sparse correspondences con-

centrated on a small region. Fig. 8(c) demonstrates a case

with nearly lateral motion along the vertical direction, which

is liable to bas-relief ambiguity. As can be seen, the geomet-

ric method may deteriorate significantly when confronted

with such challenges, especially the translation, whereas our

fusion network returns more reasonable solutions.

4.4. Selfattention

A comprehensive understanding on what is learned by

the attention module is challenging. However, as discussed

in Sec. 3.2.1, we could study its potential relation to the

spatial distance between any two pairs of correspondences.

To this end, for a pair of correspondences, we collect its

attentions to all the other pairs of correspondences in the

last self-attention layer, and then compute its spatial dis-

tance1 to other correspondences at different percentiles of

the attention set. This way we can compare spatial distance

against varying attention. Averaging over all the points in

the entire testing set, we obtained the curve shown in Fig. 7.

First, in line with the expectation, the overall trend indicates

strong correlation between attention and spatial distance. In

addition, it also reveals the overall smaller spatial distance

with increasingly higher attentions. Referring to Sec. 3.2.1,

we reckon that this is due to the increasing difficulty of ex-

tracting additional pose-related information from two points

closer to each other; such difficulty enforces stronger inter-

actions between those points in order to make contributions

to the final camera pose estimation. More discussions are in

the supplementary due to lack of space.

4.5. Baselines & Ablation Study

We provide ablation studies to elucidate the impact of

important factors by comparison with several baselines.

Aleatoric Uncertainty: We replace our geometry-guided

uncertainty with the plain aleatoric uncertainty [26, 27, 30],

1Denoting a pair of correspondences as (x1

i ,x
2

i ) and (x1

j ,x
2

j ), the

spatial distance is defined as(‖(x1

i − x
1

j )‖+ ‖(x2

i − x
2

j )‖)/2.
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Figure 7. Study of spatial distances

(pixels) against attentions.

MVS Scenes11 RGB-D Sun3D All

Rot. Tran. Rot. Tran. Rot. Tran. Rot. Tran. Rot. Tran.

Aleatoric Uncertainty 2.890 4.954 0.375 2.956 1.813 13.650 1.273 11.750 1.371 7.694

w/o Uncertainty 4.608 7.233 1.034 5.924 4.121 12.400 2.479 13.870 2.712 9.200

Median Uncertainty 3.638 4.841 0.764 4.262 2.080 10.960 1.669 13.200 1.790 7.838

w/o Attention 2.956 6.051 0.410 3.237 1.678 12.65 1.321 12.14 1.380 7.870

Discontinuity 2.910 3.984 0.384 3.268 1.667 12.160 2.298 12.310 1.573 7.452

w/o ResNet 2.519 4.539 0.409 2.805 1.742 13.550 1.261 11.630 1.306 7.506

w/o GNN 3.035 6.080 0.399 3.266 1.826 14.220 1.255 13.550 1.406 8.589

PointNet 2.833 5.665 0.409 2.850 1.652 13.220 1.270 13.490 1.333 8.080

UA-Fusion 2.502 4.506 0.388 3.001 1.480 10.520 1.340 11.830 1.246 6.888

Table 3. Ablation study of our methods under different configurations. We also compute the averaged

error over all the four scenes, as shown in the “All” column. The lowest error in each column is bolded.

(a)   𝐸",$ , 𝐸%,$ = 67.10,3.62 , 𝐸",. , 𝐸%,. = 9.02,3.56

(b) 𝐸",$ , 𝐸%,$ = 59.22,8.48 , 𝐸",. , 𝐸%,. = 9.96,4.30

(c) 𝐸",$ , 𝐸%,$ = 10.42,0.11 , 𝐸",. , 𝐸%,. = 2.81,0.12

Figure 8. Qualitative results with the geometric and DNN errors

on top of each image pair. Red dots mark the correspondences.

and leverage fusion as a post-processing step.

w/o Uncertainty: We remove the uncertainty head and the

fusion step, only regressing the camera pose.

Median Uncertainty: Instead of predicting uncertainty by

the network, we simply assign each σ−1
d a constant value—

the median of σ−1
g ’s in the entire training set. This way, the

DNN prediction would dominate the final solution on half

of the data with highest geometric uncertainty.

w/o Attention: We remove the self-attention mechanism

and use plain MLPs to compute the messages.

Discontinuity: In this case, the network directly predicts

(α, β) instead of (tx, ty, tz), as discussed in Sec. 3.2.2.

w/o ResNet and w/o GNN: Here, we remove either ResNet

or self-attention GNN from the network, i.e. relying on the

geometric feature or appearance feature alone.

PointNet: We replace the self-attention GNN with Point-

Net [43], which has a similar number of parameters.

As shown in Tab. 3, all the baseline methods lead to a

drop in the accuracy. This substantiates the effectiveness of

our geometry-guided uncertainty, self-attention mechanism,

motion prameterization, and network design. In particular,

removing uncertainty and fusion causes the most signifi-

cant degradation. We present more analysis on the aleatoric

uncertainty in the supplementary due to lack of space.

4.6. Results on ScanNet

To demonstrate the generalization capability of our net-

work trained on the DeMoN datasets, we also conduct cross-

validation experiments on the ScanNet dataset. Since the

indoor model of SuperGlue is trained on ScanNet as well

and its training set may have intersection with the testing set

here, we instead apply its outdoor model to obtain correspon-

dences. As a reference, we also report the results with the

indoor model. As can been in Tab. 2, UA-Fusion achieves

the best accuracy compared to prior arts. More importantly,

we observe similar behavior in accuracy and uncertainty as

analyzed in Sec. 4.3; this is detailed in the supplementary.

Computational performance: Our network inference takes

about 0.01s per image pair, on an RTX2080 GPU. Comput-

ing geometric uncertainty takes around 0.025s, where the

block sparsity of the Jacobian is leveraged for efficiency.

5. Conclusion

In this paper, we propose a new relative pose estimation

framework capable of reaping benefits from both the clas-

sical geometric methods and deep learning approaches. At

the crux of our method is learning the uncertainty explicitly

governed by the geometric solution, which permits fusion in

a probabilistic manner during training. Despite being spe-

cific to the relative pose problem, we envision that our idea

of learning with geometric uncertainty guidance followed by

fusion in a deep network is broadly applicable.
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[64] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and

Simon Lucey. Learning depth from monocular videos using

direct methods. In CVPR, 2018. 2

[65] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and

Xiangyang Xue. Deepsfm: Structure from motion via deep

bundle adjustment. In ECCV, 2020. 1, 2, 5, 6, 7

[66] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.

Sun3d: A database of big spaces reconstructed using sfm

and object labels. In ICCV, 2013. 5

[67] Jiaolong Yang, Hongdong Li, and Yunde Jia. Optimal essen-

tial matrix estimation via inlier-set maximization. In ECCV,

2014. 2

[68] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-

mers. D3vo: Deep depth, deep pose and deep uncertainty for

monocular visual odometry. In CVPR, 2020. 2

[69] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,

Mathieu Salzmann, and Pascal Fua. Learning to find good

correspondences. In CVPR, 2018. 5, 6

[70] Chen Zhao, Zhiguo Cao, Chi Li, Xin Li, and Jiaqi Yang.

Nm-net: Mining reliable neighbors for robust feature corre-

spondences. In CVPR, 2019. 5, 6

[71] Ji Zhao, Wanting Xu, and Laurent Kneip. A certifiably glob-

ally optimal solution to generalized essential matrix estima-

tion. In CVPR, 2020. 2

[72] Junsheng Zhou, Yuwang Wang, Kaihuai Qin, and Wenjun

Zeng. Moving indoor: Unsupervised video depth learning in

challenging environments. In ICCV, 2019. 2

[73] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017. 2

[74] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao

Li. On the continuity of rotation representations in neural

networks. In CVPR, 2019. 3, 5

[75] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang,

Ping Tan, and Long Quan. Very large-scale global sfm by

distributed motion averaging. In CVPR, 2018. 2

[76] Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee.

Rolling-shutter-aware differential sfm and image rectification.

In ICCV, 2017. 2

41



[77] Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee.

Baseline desensitizing in translation averaging. In CVPR,

2018. 2

[78] Bingbing Zhuang, Quoc-Huy Tran, Gim Hee Lee, Loong Fah

Cheong, and Manmohan Chandraker. Degeneracy in self-

calibration revisited and a deep learning solution for uncali-

brated slam. In IROS, 2019. 2

[79] Jacek Zienkiewicz, Andrew Davison, and Stefan Leutenegger.

Real-time height map fusion using differentiable rendering.

In IROS, 2016. 2

42


