Supplementary Material
Leveraging the Availability of Two Cameras for Illuminant Estimation

Abdelrahman Abdelhamed

Abhijith Punnappurath

Michael S. Brown

Samsung Al Center — Toronto
{a.abdelhamed, abhijith.p,michael.bl}@samsung.com

This supplementary material contains additional exper-
iments and details that could not be included in the main
paper due to space constraints.

S1. Predicting the second camera illuminant

In the main paper, we had focused on estimating scene
illuminants for the first camera. In this experiment, we train
the same models, described in the main paper, to predict
the illuminants for the second camera. Table S1 shows the
results for estimating illuminants for the second camera on
our radiometric dataset. As discussed in the main paper, our
method works well, and it yields the best results for predict-
ing illuminants for the second camera too. Table S2 shows
the results for the second camera on the S20 real dataset. It
can be observed that our method performs well in compar-
ison with the state-of-the-art. Note that although some of
the bias correction methods such as [9, 2] produce a lower
error on the best 25%, their worst 25% performance is very
poor compared to our method indicating that their overall fit
is quite poor. The FC4 [13] deep net, our closest competi-
tor, reports a slightly better Q3, but has orders of magnitude

Method Mean Med B25% W25% QI Q3
GW [6] 340 3.04 1.15 624 1.81 4.63
SoG [10] 376 329 126 7.02 2.01 5.08
GE-1[16] 426 3.79 134 799 2.18 5.79
GE-2[16] 444 386 144 842 233 6.09
WGE [12] 3.58 2.68 095 7.76 1.52 4.57
PCA [7] 3.72 235 093 8.83 137 4.73
WP [5] 465 4.15 151 8.68 243 6.39

Gamut Pixel [11] 310 252 094 6.22 1.46 4.24
Gamut Edge [11] 534 470 1.73 10.02 2.79 7.30

Ours (200 params) 2.39 1.85 0.58 5.12 0.99 3.28
Ours (470 params) 2.19 1.57 047 495 0.83 2.92
Ours (1460 params) 2.48 1.82 0.57 5.47 0.96 3.41

Table S1: Angular errors (degrees) on our radiometric
dataset for the second camera. Best results are in bold.
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Figure S1: (Top) Two images from the two cameras from
our S20 real dataset, captured under the same illumination.
(Bottom) A scatter plot showing the differences between the
color values of the 24 color chart patches found in each im-
age. This example illustrates the difference in the spectral
sensitivity between the two cameras.

more parameters than our method. We noticed that our ac-
curacy is lower on the second camera compared to the main
camera, but only very slightly so. This difference may be
due to variations in sensitivity between the two sensors, or
the training heuristics between the two trained models.

S2. Difference in spectral sensitivity between
the two cameras

Figure S1 shows the difference in spectral sensitivity be-
tween the two cameras used to capture the S20 dataset. The
scatter plot shows the differences between the color values
of the 24 color chart patches found in two images of the
same scene under the same illumination. The clear sep-
aration observed between corresponding patches validates
our assumption that sensors on real two-camera systems can



Method Mean Med B25% W25% Q1 Q3

GW [6] 236 1.94 056 499 0.94 2.99
SoG [10] 272 1.89 0.66 630 1.00 3.62
GE-1[16] 526 4.14 1.04 11.56 1.50 8.44
GE-2 [16] 5.87 4.07 1.04 1332 1.60 9.28
WGE [12] 6.77 493 1.00 1534 1.63 11.82
PCA [7] 429 282 082 10.12 1.28 6.16
WP [5] 275 213 053 6.14 1.00 3.43
Gamut Pixel [11] 724 6.15 132 1471 237 12.73
Gamut Edge [11] 490 448 0.79 1046 1.58 7.16
CM [8] 292 195 046 6.65 0.88 4.66

Homography [9] (S0G)  3.94 3.10 0.34 9.30 0.65 5.86
Homography [0] (PCA)  3.34 270 049 696 1.02 5.42

APAP [2] (GW) 2.89 2.14 0.37 6.59 0.75 4.52
APAP [2] (SoG) 371 245 034 9.08 0.71 5.76
APAP [2] (PCA) 3.16 2.56 0.35 6.82 091 4.96
SHE [1] 455 377 0.73 930 141 7.56
Quasi U CC [4] 3,53 2.11 0.68 837 1.14 4381
Quasi U CC finetuned [4] 2.52 1.85 0.59 5.63 0.96 3.34
FC4[13] 195 156 0.54 391 1.03 2.44
FFCC [3] 2.03 1.72 0.59 4.02 095 2.67
Ours (200 params) 1.68 155 0.54 3.03 0.72 250
Ours (470 params) 1.82 1.71 0.65 3.24 0.89 247
Ours (1460 params) 1.75 144 044 3.50 0.69 2.61

Table S2: Angular errors (degrees) on the second camera
from our S20 two-camera dataset. Best results are in bold.

likely have different spectral profiles in practice.

S3. Experiments on two similar cameras

In the main paper, for the radiometric dataset, we se-
lected two different cameras from two different manufac-
turers from the dataset of [14]. In this experiment, we se-
lect two similar cameras from [14] from the same manu-
facturer with similar spectral sensitivity functions. Plots of
the distribution of ground truth illuminants corresponding

Radiometric dataset 1
Ground truth illuminants

Radiometric dataset 2
Ground truth illuminants
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(A) Dissimilar cameras (B) Similar cameras
Figure S2: Plots of ground truth illuminants for the two
cameras from our radiometric datasets where (A) the two
cameras are from different manufacturers and have differ-
ent spectral sensitivity profiles, and (B) the two cameras are
from the same manufacturer and have very similar spectral
characteristics. Note that plot (A) has been reproduced from
Fig. 5(A) of the main paper for ease of comparison. It can
be observed that the illuminants from the two cameras are
grouped closer together in plot (B) because the two cameras
have similar spectral sensitivity functions.

to the two cameras for both these datasets are shown in Fig.
S2. Tables S3 and S4 show that even with slight differ-
ences in the spectral sensitivity between the two cameras,
our method still performs well and achieves better results
than many well-established single-image methods.

S4. Experiments with larger networks

In this experiment, we train the larger network with 1460
parameters on the radiometric dataset. Table S5 shows the
results compared to the other two smaller networks pre-
sented in the main paper. The larger network seems to
overfit the training data, and hence, yields slightly worse
results than the smaller networks. Similar observations can

Method Mean Med B25% W25% Ql Q3 Method Mean Med B25% W25% Ql Q3
GW [6] 357 325 123 647 191 4.89 GW [6] 3.87 3.51 130 7.05 2.04 5.33
SoG [10] 3.85 343 129 7.13 2.00 5.23 SoG [10] 439 393 149 8.04 236 592
GE-1 [16] 436 386 142 8.15 226 598 GE-1[16] 495 440 1.62 922 256 6.76
GE-2 [16] 459 399 147 875 238 6.18 GE-2 [16] 5.11 443 161 977 257 6.94
WGE [12] 3.83 2.85 099 840 1.61 4.93 WGE [12] 415 3.04 1.06 9.14 1.73 535
PCA [7] 4.08 256 096 972 147 527 PCA [7] 4.10 2775 097 9.58 1.56 5.12
WP [5] 470 420 1.60 8.69 252 634 WP [5] 5.09 454 171 946 2.71 6.88

Gamut Pixel [11] 3.21 258 093 648 147 4.37
Gamut Edge [11] 5.49 4.88 1.84 10.20 2.90 7.42

Gamut Pixel [11] 3.52 293 1.01 7.02 1.63 4.82
Gamut Edge [11] 6.01 539 2.01 11.09 3.20 8.09

Ours (200 params) 3.07 2.41 0.75 6.48 1.28 4.30
Ours (470 params) 2.57 1.81 0.43 597 0.82 3.63

Ours (200 params) 3.27 2.56 0.78 696 1.32 4.49
Ours (470 params) 2.85 2.00 0.54 6.60 0.96 3.92

Table S3: Angular errors (degrees) on another radiomet-
ric dataset where both cameras are from the same manufac-
turer. The results shown are for the first camera.

Table S4: Angular errors (degrees) on another radiomet-
ric dataset where both cameras are from the same manufac-
turer. The results shown are for the second camera.



Method Mean Med B25% W25% Q1 Q3

Ours (200 params) 2.80 2.20 0.72 5.87 1.19 3.81
Ours (470 params) 2.65 2.00 0.64 5.72 1.07 3.61
Ours (1460 params) 2.90 2.23 0.69 6.23 1.16 4.03

Table S5: Angular errors (degrees) on the radiometric
dataset for the first camera using larger network sizes. Best
results are in bold.

be made in Table S1. All models were trained with the
Adam [15] optimizer for 1 million epochs.
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