
Supplementary Material: Sequence-to-Sequence Contrastive Learning for Text
Recognition

Aviad Aberdam∗

Technion
aaberdam@cs.technion.ac.il

Ron Litman∗

AWS
litmanr@amazon.com

Shahar Tsiper
AWS

tsiper@amazon.com

Oron Anschel
AWS

oronans@amazon.com

Ron Slossberg
Technion

ronslos@cs.technion.ac.il

Shai Mazor
AWS

smazor@amazon.com

R. Manmatha
AWS

manmatha@amazon.com

Pietro Perona
Caltech and AWS
peronapp@amazon.com

1. Text Recognition Scheme

In this section, we provide additional details on the
text recognition architecture components considered in
this work. In particular, we focus on three components:
(i) the transformation performed by the thin-plate splines
(TPS) [18, 9], (ii) the CTC based decoder [5, 17] and (iii)
the attention based decoder [1, 3, 13].

1.1. Transformation

This stage transforms a cropped text image X into a nor-
malized image X′. This step is necessary when the input
image contains text in a non-axis aligned layout, as often
occurs in handwritten text and scene text images.

In this work, we follow [1], and utilize the Thin Plate
Spline (TPS) transformation [18, 9] which is a variant of
the spatial transformer network [9]. As depicted in Fig. 1,
in this transformation, we first detect a pre-defined number
of fiducial points at the top and bottom of the text region.
Then, we apply a smooth spline interpolation between the
obtained points to map the predicted textual region to a con-
stant pre-defined size.

1.2. Connectionist Temporal Classification (CTC)

The CTC decoder [5] operates on a given sequential fea-
ture map F = [f1, f2, . . . , fT ], which in our framework can
be F ∈ {V,H, (H,V)}. The inference phase consists of
three stages. In the first stage, each frame ft is transformed
by a fully connected layer to yield f ′t . Then, the CTC finds
the sequence of characters with the highest probability:

c = argmax
π

T∏
t=1

f ′t,πt
, (1)

∗Authors contribute equally and are listed in alphabetical order.

+ + + + + + + + + + + + +
+ + + + + + + + + + + + +

Figure 1: TPS transformation. This transformation first
predicts fiducial points – marked as green points. Then, a
smooth spline interpolation is employed, transforming these
points to the border of a constant rectangle, yielding a nor-
malized image with a fixed predefined size.

where f ′t,i denotes the ith element in f ′t . Next, the CTC
removes repeated characters and blanks:

y = ϕ(c), (2)

where ϕ(·) denotes the mapping function. For example, if
c = “aa-a-bbb-cc-ccc--” then “y = aabcc”.

For the CTC procedure during training we refer the
reader to [5, 17].

1.3. Attention decoder

As for the CTC, the attention also operates on a given
sequential feature map F ∈ {V,H, (H,V)}. The first step
of decoding starts by computing the vector of attentional
weights, αt′ ∈ RT . For this goal, we first calculate et′,t:

et′,t = aT tanh(Wst′−1 +Vft + b) , (3)

where W,V,a,b are trainable parameters, and st′−1 is the
hidden state of the recurrent cell within the decoder at time

1



Figure 2: Illustrations of augmentation procedures. We
show different augmentation pipelines that were consid-
ered in this work (a), which led to the final augmentation
pipeline. We also show augmentations examples using the
SimCLR [2] pipeline (b).

t′. Then, we compute αt′ by:

αt′,t =
exp(et′,t)∑T
j=1 et′,j

. (4)

As mention in the paper, the decoder linearly combines the
columns of F into a vector g by utilizing the learned αt′ :

gt′ =

T∑
t=1

αt′,tft . (5)

Next, the recurrent cell is fed with:

(xt′ , st′) = RNN(st′−1, [gt′ , f(yt′−1)]) , (6)

where f(·) is a one-hot embedding, [·, ·] denotes the con-
catenation operator, and yt′ is obtained by:

yt′ = softmax(W0xt′ + b0) , (7)

where W0,b0 are trainable parameters. The loss used
for the attention decoder is the negative log-likelihood, as
in [3].

2. Data Augmentation
In this section, we provide additional details for repro-

ducing our augmentation procedure, implemented using
the imgaug [10] augmentation package. As described in
Section 5, this augmentation pipeline is used for the self-
supervised training, where we stochastically augment each
image twice. In Fig. 2, we present different augmentation
procedures that we examined in our work, which eventually
led us to the final pipeline. Our default procedure consists
of a random subset of the following operations.

Linear contrast We modify the input image contrast by
applying the pixel-wise transformation: 127 + α(v − 127),
where α is sampled uniformly from the interval [0.5, 1.0]
and v ∈ [0, 255] is the pixel value.

Blur We blur the image using a Gaussian kernel with a
randomly selected standard deviation of σ ∈ (0.5, 1.0).

Sharpen The image is sharpened by blending it with a
highly sharpened version of itself. The lightness parame-
ter found in the imgaug framework, is sampled uniformly
from the interval [0.0, 0.5], and the alpha factor used for
blending the image is sampled uniformly from the interval
[0.0, 0.5].

Crop We first extract a smaller-sized sub-image from the
given full-sized input image. Then, we resize this crop to
the original size. As mention in Section 6, the vertical crop-
ping can be more aggressive than the horizontal cropping.
Therefore, the percentage of the vertical cropping is sam-
pled uniformly from the interval [0%, 40%], while the hori-
zontal cropping percentage is sampled from [0%, 2%].

Perspective transform A four point perspective transfor-
mation is applied. These points are placed on the input im-
age by using a random distance from the original image cor-
ners, where the random distance is drawn from a normal dis-
tribution with a standard deviation sampled uniformly from
the interval [0.01, 0.02].

Piecewise affine We apply an affine transformation that
moves around each grid point by a random percentage
drawn uniformly from the interval [2%, 3%].

A pseudo-code for the augmentation pipeline, written
with the imgaug [10] package, is as follows.

1 from imgaug import augmenters as iaa
2 iaa.Sequential([iaa.SomeOf((1, 5),
3 [
4 iaa.LinearContrast((0.5, 1.0)),
5 iaa.GaussianBlur((0.5, 1.5)),
6 iaa.Crop(percent=((0, 0.4),
7 (0, 0),
8 (0, 0.4),
9 (0, 0.0)),

10 keep_size=True),
11 iaa.Crop(percent=((0, 0.0),
12 (0, 0.02),
13 (0, 0),
14 (0, 0.02)),
15 keep_size=True),
16 iaa.Sharpen(alpha=(0.0, 0.5),
17 lightness=(0.0, 0.5)),
18 iaa.PiecewiseAffine(scale=(0.02, 0.03),
19 mode=’edge’),
20 iaa.PerspectiveTransform(
21 scale=(0.01, 0.02)),
22 ],
23 random_order=True)])

2



(a) IAM (c) CVL (b) RIMES 

(d) IITK300 (e) IC03 (f) IC13 

Figure 3: Dataset samples.

3. Datasets
In this work, we consider the following public datasets

for handwriting and scene text, see examples in Fig. 3:

• RIMES [6] handwritten French text dataset, written
by 1300 different writers, partitioned into writer inde-
pendent training, validation and test. This collection
contains 66,480 correctly segmented words.

• IAM [15] handwritten English text dataset, written by
657 different writers, partitioned into writer indepen-
dent training, validation and test. This collection con-
tains 74,805 correctly segmented words.

• CVL [12] handwritten English text dataset, written by
310 different writers, partitioned into writer indepen-
dent training and test. 27 of the writers wrote 7 texts
and the other 283 writers wrote 5 texts.

• SynthText (ST)[7] contains 8M cropped scene text
images which were generated synthetically. This
dataset was utilized for training the scene text recog-
nizer.

• IIIT5K-words (IIIT5K) [16] contains 2000 training
and 3000 testing cropped scene text images from the
Internet.

• ICDAR-2003 (IC03) [14] contains 867 cropped scene
text images.

• ICDAR-2013 (IC13) [11] contains 848 training and
1015 testing cropped scene text.

The last three datasets were used just for validation and test
sets as described Section 4.

4. Implementation Details
Recognizer setting Unless otherwise specified, the text
recognizer architecture consists of: a feature extraction
stage of a 29-layer ResNet [8], as in [4, 1]; a sequence mod-
eling stage using a two-layer Bidirectional-LSTM (BiL-
STM) with 256 hidden units per layer; and if needed, an at-
tention decoder of an LSTM cell with 256 memory blocks.

Following common practice in text recognition [1], we pre-
resize all images to 32 × 100 both for training and test-
ing. For the English datasets (IAM, CVL, IIIT5K, IC03
and IC13), we use 95 symbol classes: 52 case-sensitive let-
ters, 10 digits and 33 for special characters. For the French
dataset (RIMES), we add to the above the French accent
symbols. As for special symbols for CTC decoding, an ad-
ditional ”[blank]” token is added to the label set. For the
attention decoder, two special symbols are added: “[S]”,
“[EOW]” which indicate the start of the sequence and the
end of the word.

SimCLR re-implementation To compare our method
to non-sequential contrastive learning methods, we re-
implement the SimCLR algorithm, with the same augmen-
tations and projection head as in [2]. This algorithm can be
applied in our settings as we anyhow resize each input im-
age to a fixed width following the common practice in text
recognition [1, 13].

Pre-training procedure In general, for the self-
supervised training, we use a batch size of 1024, and train
for 200K iterations for handwritten datasets and 400K
iterations for scene-text. That said, since frame-to-one
mapping results in many more instances for the contrastive
loss (Figure 5(c)), we needed to reduce the batch size to
256. To compensate for it, we increased the number of
iterations to 300K for handwritten datasets and to 600K
for scene-text. For optimization, we use the AdaDelta
optimizer [19] with a decay rate of 0.95, a gradient clipping
parameter with a magnitude of 5 and a weight decay
parameter of 10−4. The learning rate is initialized to 10,
and is reduced by a factor of 10 after 60% and 80% of the
training iterations. Finally, all experiments are trained and
tested using the PyTorch framework on 4 cards of Tesla
V100 GPU with 16GB memory.

Decoder-evaluation and fine-tuning procedures For
these stages, we train the decoder using a batch size of
256 for 50K iterations, employing a similar learning rate
scheduling as in the self-supervised phase. The augmenta-
tion procedure consists of light cropping, linear contrast and
Gaussian blur. We select our best model using a validation
dataset, where in handwritten text we use the public valida-
tion sets, and in scene text our validation data is the union
of the training data of IC13 and IIIT, as done in [1].

5. Error Vs. Labeled Data Amount
In Fig. 4, we present the word error rate of SeqCLR and

the supervised baseline as a function of the portion of la-
beled data used for the fine-tuning phase (see Section 5.2).
For example, in the RIMES dataset when using an attention

3



10 100
Portion of labeled data [%]

20

30

40

50

60

70

80

Er
ro

r [
%

]

(a) IAM with a CTC decoder

Supervised
SeqCLR

10 100
Portion of labeled data [%]

20

30

40

50

60

70

80

Er
ro

r [
%

]

(b) IAM with an attention decoder

Supervised
SeqCLR

10 100
Portion of labeled data [%]

7

10

20

30

40

50

60

70

Er
ro

r [
%

]

(c) Rimes with a CTC decoder

Supervised
SeqCLR

10 100
Portion of labeled data [%]

7

10

20

30

40

50

60

70

Er
ro

r [
%

]

(d) Rimes with an attention decoder

Supervised
SeqCLR

Figure 4: Word error rate as a function of labeled data
amount in a log-log scale. Roughly speaking, SeqCLR un-
supervised pre-training has the same effect as doubling the
labeled data amount in the sense of reducing the error rate.

decoder, the SeqCLR algorithm utilizing 50% of the labeled
data achieves the same error rate as training the supervised
baseline on the entire labeled dataset. In general, as can be
seen, SeqCLR is effective as almost doubling the size of the
labeled dataset.

References
[1] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park,

Dongyoon Han, Sangdoo Yun, Seong Joon Oh, and Hwalsuk
Lee. What is wrong with scene text recognition model com-
parisons? dataset and model analysis. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4715–4723, 2019. 1, 3

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 2, 3

[3] Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang
Pu, and Shuigeng Zhou. Focusing attention: Towards accu-
rate text recognition in natural images. In Proceedings of the
IEEE International Conference on Computer Vision, pages
5076–5084, 2017. 1, 2

[4] Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang
Pu, and Shuigeng Zhou. Focusing attention: Towards ac-
curate text recognition in natural images. In Proceedings of
the IEEE international conference on computer vision, pages
5076–5084, 2017. 3

[5] Alex Graves, Santiago Fernández, Faustino Gomez, and

Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 369–376. ACM, 2006. 1

[6] Emmanuèle Grosicki and Haikal El Abed. Icdar 2009 hand-
writing recognition competition. In 2009 10th International
Conference on Document Analysis and Recognition, pages
1398–1402. IEEE, 2009. 3

[7] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data for text localisation in natural images. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2315–2324, 2016. 3

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[9] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in neural infor-
mation processing systems, pages 2017–2025, 2015. 1

[10] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi
Tanaka, Jake Graving, Christoph Reinders, Sarthak Ya-
dav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui,
Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kil-
ian Pfeiffer, Ben Cook, Ismael Fernández, François-Michel
De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo,
Raphael Meudec, Matias Laporte, et al. imgaug. https://
github.com/aleju/imgaug, 2020. Online; accessed
01-Feb-2020. 2

[11] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida,
Masakazu Iwamura, Lluis Gomez i Bigorda, Sergi Robles
Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Al-
mazan, and Lluis Pere De Las Heras. Icdar 2013 robust
reading competition. In 2013 12th International Conference
on Document Analysis and Recognition, pages 1484–1493.
IEEE, 2013. 3

[12] Florian Kleber, Stefan Fiel, Markus Diem, and Robert Sab-
latnig. Cvl-database: An off-line database for writer re-
trieval, writer identification and word spotting. In 2013 12th
international conference on document analysis and recogni-
tion, pages 560–564. IEEE, 2013. 3

[13] Ron Litman, Oron Anschel, Shahar Tsiper, Roee Litman,
Shai Mazor, and R Manmatha. Scatter: selective con-
text attentional scene text recognizer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11962–11972, 2020. 1, 3

[14] Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang,
Shirley Wong, and Robert Young. Icdar 2003 robust reading
competitions. In Seventh International Conference on Doc-
ument Analysis and Recognition, 2003. Proceedings., pages
682–687. Citeseer, 2003. 3

[15] U-V Marti and Horst Bunke. The iam-database: an english
sentence database for offline handwriting recognition. In-
ternational Journal on Document Analysis and Recognition,
5(1):39–46, 2002. 3

[16] Anand Mishra, Karteek Alahari, and CV Jawahar. Scene text
recognition using higher order language priors. 2012. 3

[17] Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end
trainable neural network for image-based sequence recog-
nition and its application to scene text recognition. IEEE

4

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug


transactions on pattern analysis and machine intelligence,
39(11):2298–2304, 2016. 1

[18] Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao,
and Xiang Bai. Robust scene text recognition with auto-
matic rectification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4168–4176,
2016. 1

[19] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012. 3

5


