A. Supplementary Material for LQF

In this Supplementary Material we provide additional
empirical results (Appendix A.l), more details about the
training procedure and implementation used (Appendix A.2),
and we derive the expression in eq. (8) for the change in acti-
vations when a training sample is removed (Appendix A.3).

A.l. Additional results

Preconditioning with Adam vs. K-FAC. In Section 4.1 we
train LQF and LQF FC using K-FAC for preconditioning,
instead of alternatives like Adam. K-FAC provides several
advantages: the learning rate choice is easy to interpret in
the case of a quadratic problem (Section 3.2), it easy to
analyze theoretically (e.g., in eq. 6), and it provides better
convergence guarantees that Adam. Moreover, it provides
an approximation of the inverse of the Hessian which we
need to compute eq. (8). We now test how Adam and K-
FAC preconditioning compare to each other in terms of raw
test error after hyper-parameter optimization. We train LQF,
LQF FC and GaF with Adam on all datasets and report
the results in Table 3. For each dataset we try different
learning rates n € {0.001,0.0004,0.0001}, weight decay
A € {107°,1075} and augmentation schemes (central crop,
random crop, random resized crop) and report the best result.
We observe that after hyper-parameter optimization LQF
obtains similar final accuracies when trained with Adam and
K-FAC (Table 3). Similarly, for GaF we observe that Adam
achieves errors comparable with SGD (in this case without
K-FAC). However, K-FAC performs better than Adam when
training only the last layer (LQF FC). This suggests that
the more sophisticated pre-conditioning of K-FAC is more
important to ensure good convergence when optimizing the
lower dimensional, badly conditioned problem of LQF FC.

MSE loss for non-linear fine-tuning. In Figure 8 we train
a standard non-linear network using cross-entropy loss and
MSE loss with different number of training samples. We
train with learning rate € {0.1,0.05, 0.01, 0.001, 0.0001}
and weight decay A € {0.0001, 0.00001} and report the best
result. We observe that the MSE loss tends to outperform
cross-entropy in the low-data regime, suggesting that some
of the benefits of the MSE loss also apply to non-linear
fine-tuning.

Ablation study for on-line learning. In addition to Fig-
ure 5, in Figure 7 we show the result of using LQF with
CE loss instead of MSE, ReL.U instead of Leaky ReLU or
not using K-FAC. This shows that all components contribute
to better on-line performance, but their contribution is rel-
atively minor with respect to the difference between using
LQF (solving a convex problem) or NLFT (non-convex).

Tuning weight-decay. We did not observe major differences
in accuracy by tuning the weight decay parameter suggesting

LQF LQFFC GaF

Caltech-256 14.2 17.2 16.0
Chest X-Ray 6.6 96 6.1
Malaria Cells 4.2 6.1 4.8
MIT-67 20.4 254 23.1
Oxford Pets 6.7 7.8 7.2
Fine-grained datasets
Stanford Dogs 124 13.3 11.7
Oxford Flowers 6.5 10.8 13.8
CUB-200 23.1 29.3 285
Aircrafts 33.1 459 45.6
Stanford Cars 24.0 39.2 37.0

Table 3: Test errors using Adam. We report the test errors
obtained by training different linear methods with Adam
instead of SGD (in the case of LQF, we also train without K-
FAC preconditioning). We note that Adam gives comparable
results to SGD+K-FAC for LQF and to standalone SGD
for GaF (Table 1), but is slighly worse than SGD+K-FAC
for LQF FC, where we only optimize the last layer. The
only exception where Adam improved results for LQF and
GaF is Chest X-Ray, possibly due to the more exhaustive
hyper-parameter search we used for Adam.

that the inductive bias of linearization is enough to grant
good generalization.

However, if required, we note that LQF provides a way
to tune weight decay efficiently. Since there the LQF loss
function is strongly convex, it has a unique global minimum.
This implies that, after training with a given value of weight
decay, we can increase the value of weight decay and fine-
tune the previous solution to converge to the new global
minimum. This is in contrast with DNNs, which may remain
stuck in a suboptimal local minimum if weight decay is
changed after convergence [1]. In Figure 9 we show the
test accuracy obtained on Caltech-256 when training from

On-line learning on MIT-67

method
70 Inc. LQF no-KFAC
Inc. LQF
Paragon
Inc. LQF CE
Inc. LQF RelLU

Inc. NLFT

Test Error (%)
w
o

0 1000 2000 3000 4000 5000
Number of samples used to train

Figure 7: Ablation study on on-line learning.

CUB-200 Caltech-256
.80 —— (@
X MSE
5 60
0
g 40
[

20
10t 103 10! 103

Number of Shots Number of Shots

Figure 8: Using MSE loss with NLFT. Plot of the test error
obtained by training with NLFT using either cross-entropy
of MSE loss for different number of training samples per
class (shots). While cross-entropy loss is comparably or
better than MSE loss when training with many samples, we
observe that in the low-shot regime MSE tends to always
outperform CE. This suggests that using MSE loss is not
beneficial only for lienarized models.

scratch with different values A € {1073,5-107%,107%,5 -
1075,1075} of weight decay. We then load the solution
obtained with A\g = 5 - 10~° and fine-tune it with different
values A of weight decay and compare this with the results
obtained training from scratch. We observe that the two
approaches (training from scratch and fine-tuning) obtain
similar errors, suggesting that indeed for LQF we cab use a
cheaper hyper-parameter search based on fine-tuning.

We can also go a step further and automatically optimize
weight decay using a validation set. Recall from eq. (4) that
the weights at convergence as a function of the weight decay
A can be written as:

w*(\) = (JTT+XD7LI(Y — fo(X)). (10)
In particular, w* (\) is a differentiable function of A, so we
expect to be able to optimize A using gradient descent. In
order to do that, consider the validation loss:

ISP () = —— 3

Dy,
[Dua (2,9) €D

ly — fo(z) =V fo(z)

(1)

We want to find the value of \ that minimizes L.,. The
gradient with respect to A is given by

NLya = —w* - (F+ M) 7'V Ly 12)

preconditioned gradient of val. set

Note that the second term of Oy Ly, is simply the pre-
conditioned gradient of the validation loss, which can ap-
proximated using K-FAC. We leave further exploration of
this research direction to future work.

1.8 x 10*
—— From scratch

1.7 x 10! Fine-tune

S

2 1.6x10?

w

v

(%]

(]

F 1.5x 10! /
1.4 x 10!

107° 1074 1073
Weight Decay

Figure 9: Exploring different weight decay values via
fine-tuning. We compare the test error obtained by train-
ing from scratch with a given weight decay value)\, and
the test error obtained by loading the solution found with
Ao = 5 - 10~* and fine-tuning with a different value of \.

A.2. Experimental details

Choice of datasets. We have compared the algorithms on a
several datasets (Table 1). Most of the datasets are standard
in the fine-tuning or fine-grained classification literature [29,

, 32]. We have added additional datasets to this list (Chest
X-ray, Malaria Cells) so that we could compare on a different
domain (medical images instead of natural images). Some
of the datasets we use do not have a standard train/test split.
In those cases, we use the following splits when reporting
the results: For Oxford Flowers we do not merge training
and validation data, we only use the training images (1020
samples, instead of the 2040 of train+val). For Caltech-
256, we randomly sample 60 images per class to train and
test on the remaining images (this scheme is sometimes
called Caltech-256-60 in the literature). For Malaria Cell,
we randomly select 75% of samples for training, and test of
the remaining ones.

Pre-training. In all our experiments we use a ResNet-50
backbone pretrained on ImageNet using SGD (we use the
reference PyTorch pretraining scheme: 90 epochs with cross-
entropy loss, learning rate 0.1 decayed by a factor 10 every

N30 epochs, momentum 0.9). We use Leaky ReLU activations
for LQF, while we use standard ReLLU activations for all
other methods. To ensure that the comparison is as fair as
possible, we obtain the weights of the Leaky ReLU network
by starting from the pretrained ReLU network, changing the
activations, and then fine-tune on ImageNet with SGD for
another epoch.” We also tried training the backbone from
scratch on ImageNet using Leaky ReLU activations, but did
not observe any major difference in performance between
the two.

’Interestingly, we observe that even without fine-tuning the weights
learned for ReLU activations still achieve a good test error when used with
Leaky ReLU activations. This makes fine-tuning with the new activations
particularly easy.

Optimization. In all experiments, we train using SGD
with momentum 0.9 and batch size 28. We search for
the learning rate in n € {0.01,0.001} and weight decay
A € {107%,107°}. We report the best result. Instead of
applying weight decay directly to the gradient update as of-
ten done, we add the /5 weight penalty to the loss function.
This is required when using K-FAC to compute the correct
pre-conditioned update, but it does not otherwise change the
udpate equation when not using K-FAC.

In Appendix A.1 we present additional results using
Adam. In this case we search for the learning rate
in n € {0.001,0.0004,0.0001} and weight decay A\ €
{1075,107%}. When training GaF with Adam we use
B1 = 0.5 as suggested in [36], otherwise we use 5; = 0.9.

Data augmentation. Since different tasks may require dif-
ferent types of data augmentation, we train with different
augmentation schemes (center crop, random crop, resized
random crop) and report the best result. For center crop,
we resize the image to 256 x 256 and extract the central
crop of size 224 x 224, while for random crop we extract
a 224 x 224 in a random position and also apply a random
horizontal flip. In both cases we test with center crops. We
also try the resized random crops augmentation commonly
used for ImageNet pre-training. We found this augmentation
to be too strong for some tasks, and it gives significantly
better results only in the case of Chest X-Rays. For this
reason, and to save computation time, we only train random
crop with one combination of hyper-parameters (learning
rate 7 = 0.001 and weight decay A\ = 107°).

Linearization. We follow the procedure of [36] to linearize
the network. The main difference is that we do not fuse the
batch norm layer with the previous convolutional layer, but
rather we also linearize the batch norm layer. We did not
observe major difference in performance by using one or
the other solution, but we opted for the latter to keep the
structure of the linearized and original network as close as
possible when performing the comparison. In order to ensure
linearity, for all linear models (LQF, LQF FC, GaF, Standard
FC) we put batch normalization in eval mode when training
(that is, we use the (frozen) running mean and variance to
whithen the features rather than using the current mini-batch
statistics).

B-LQF. The only change necessary for B-LQF with respect
to stnadard LQF is to replace the global average pooling
before the classification layer with a linearized version of
bilinear pooling with square root normalization [31]. Let
z € REWXC be the last convolutional layer features, where
H and W are the spatial dimensions and C' is the number
of channels. Their covariance matrix ¥ € R¢*% can be
written as:

_ L7 1 _ T
Y= N7 (I N]l)z—z Az (13)

where I denotes the identity matrix and 1 denotes the matrix
of all ones and N = H - W. Using the same notation as
[36], let h(z(r)) = VE = /2T (r)Az(r). To compute the

linearization forward pass of the layer we need to compute:

1 -1
Oh(z(r)) = 5\/E (0,27 Az + 2T A8,2). (14)
Note that we already have /3 from the forward pass of the
base model, so computing the forward pass of the linearized
model does not add much to the complexity.

Robustness to optimization hyper-parameters. As
mentioned in Section 4.7, to obtain the plot in Fig-
ure | (right) we train LQF and NLFT with SGD with
n € {0.05,0.01,0.005,0.001,0.0001}, batch size b €
{16, 32,64} and weight decay A € {107°,107%,5- 10~}
and we report the best result. Due to the larger search space,
we report the results only for a representative subset of the
datasets: Oxford Flowers, MIT-67,CUB-200, Caltech-256,
Stanford Dogs, FGVC Aircrafts.

A.3. Derivation of interpretability (eq. 8)

Recall that in the case of LQF the hessian of the MSE
loss (eq. (3)) is given by H = F + \I where F = . JJ© =
%3N 97 g;. where g; = V., fo(x;) are the Jacobian of
the ¢-th sample computed at the linearization point wg. To
keep the notation simple, assume this a binary classification
problem, so that the label y € {0,1} is a scalar and the
Jacobian g; is a row vector (a similar derivation holds for a
multi-class problem).

Let w* be the optimum of the loss function computed
using N training samples. Since in a quadratic problem a
Newton-update converges to the optimum in a single step, we
can write the new optimal weights obtained after removing
the ¢-th training sample — that is, training with only NV — 1
samples — as:

w*; =w* — H 'V, L_i(w*) (15)

where L_,; and H_; are respectively the training loss com-
puted without the sample ¢ and H_; is its hessian. Note that
we can write L_;(w) as

Los(w) = L(w) — xclyi — foles) — guwl”

Since w* is the optimum of the original problem, we have
V L(w*) = 0. Using this and the previous equation we get:

VL _i(w*) = VyLw") - gTe; = —gTe;

where e; = %(y — g;w*)- is the (weighted) prediction error
on the sample x;. Plugging this in eq. (15) we have

* ok -1.T7 .
w', =w" 4+ H_ g €.

We now derive an expression for H :} as a function of F'.
Note that
N 1
H ,=F ,+XM=——F4+ X - ——glg,.
+ N_1 T N_1%9

Let A = %F + AI. Note that H_; is a rank-1 update of
A. Using the Sherman—Morrison formula for the inverse of
a rank-1 update (or, more generally, the Woodbury identity
in the case of a multi-class problem), we have

1 AlglgiA™!

H!'=(A-———¢glg) t=4""1—
i = AT) N—1+gA~1gT

The activation change A f(Zest) = fuwr (Trest) — [w* (Zrest)
after removing a training sample is then given by:

Af(xtest) = glest(w* - wil)
= gtestH:ilgiTei
eigtestAilgiTgiAilgi
N —1+g;A~'gl

Reorganizing the terms, we obtain the following expression
for eq. (8) in the main paper:

= eiglestA7 lgi -

(07

m)eigtestA_lgiT

Af(wtest) = (1 -

where we defined a; = g;A~1g]. In particular, note that
for large datasets (/N >> 1) the change in activations is
simply given by e;giest A~ gl which measures the similarity
of the Jacobian of the sample zy and the jacobian of x;
under the metric induced by the kernel A~!. Finally, note
that A1 is the inverse of the Fisher Information Matrix F
plus a multiple of the identity, which we can easily estimate
using K-FAC [35]. This is particularly convenient since
we are already computing the K-FAC approximation to pre-
condition the gradients.

In the case of a multiclass problem, the Jacobian g; is
a C x D matrix, where C' is the number of classes and D
is the number of parameters. In this case, we get a similar
expression:

H}=A"" = A 'g] (N =)o + ;A" gl) g AT

The activation change A f(Ziest) = fuor (Trest) — fur | (Trest)
after removing a training sample is then given by:

Af(Tiest) =Grest(w™ — w™ ;)
=Grest :ilgiT €;
=g A7 g €
- gtestAilgiT((N -1l + giAilgiT)ilgiAilgiTei
Reorganizing the terms, we have:
Af(#es) = ges A 0] (Io = M~ ai)e;

where M = (N —1)I. 4+, a; = ;A 1gl isnowa C x C
matrix and I denotes the C' x C' identity.

