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Figure 1: Details of the architectures used in our work. (A) Encoder-decoder architecture [25] used to design our sub-
networks in the main network. (B) Discriminator architecture.

Our supplemental material is organized as follows: Sec.
1 provides information on our implementation, including
the description of our main network, the discriminator net-
work, and additional training details. Sec. 2 presents ab-
lation studies that we carried out to validate our network

design and loss function. Sec. 3 provides additional qualita-
tive results. Sec. 4 concludes with a discussion on potential
applications of our proposed method.
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Figure 2: Comparisons between our results with (w/) and without (w/o) the adversarial loss for training. The peak signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM) [30], and perceptual index (PI) [1] are shown for each result.
Notice that higher PSNR and SSIM values are better, while lower PI values indicate better perceptual quality. The input
images are taken from our test set.



1. Implementation Details
In the main paper, we proposed a coarse-to-fine network

to correct exposure errors in photographs. In this section,
we provide the implementation details of our network, the
discriminator network used in the adversarial training pro-
cess, and additional training details.

1.1. Main Network

Our main network consists of four sub-networks with
∼7M parameters trained in an end-to-end manner. The
largest network capacity is dedicated to the first sub-
network with decreasing amounts of capacity as we move
from coarse-to-fine scales. Each sub-network accepts a dif-
ferent representation of the input image extracted from the
Laplacian pyramid decomposition. The first sub-network
is a four-layer encoder-decoder network with skip connec-
tions (i.e., U-Net-like architecture [25]). The output of the
first convolutional (conv) layer has 24 channels. Our first
sub-network has ∼4.4M learnable parameters and accepts
the low-frequency band level of the Laplacian pyramid, i.e.,
X(4). The result of the first sub-network is then upscaled
using a 2×2×3 transposed conv layer with three output
channels and a stride of two. This processed layer is then
added to the first mid-frequency band level of the Laplacian
pyramid (i.e., X(3)) and is fed to the second sub-network.

The second sub-network is a three-layer encoder-
decoder network with skip connections. It has 24 channels
in the first conv layer of the encoder, with a total of ∼1.1M
learnable parameters. The second sub-network processes
the upscaled input from the first sub-network and outputs
a residual layer, which is then added back to the input to
the second sub-network followed by a 2×2×3 transposed
conv layer with three output channels and a stride of two.
The result is added to the second mid-frequency band level
of the Laplacian pyramid (i.e., X(2)) and is fed to the third
sub-network, which generates a new residual that is added
back again to the input of this sub-network.

The third sub-network has the same design as the second
network. Finally, the result is added to the high-frequency
band level of the Laplacian pyramid (i.e., X(1)) and is fed
to the fourth sub-network to produce the final processed im-
age.

The final sub-network is a three-layer encoder-decoder
network with skip connections and has ∼482.2K learnable
parameters, where the output of the first conv layer in its
encoder has 16 channels. We provide the details of the main
encoder-decoder architecture of each sub-network in Fig. 1-
(A).

1.2. Discriminator Network

In the adversarial training of our network, we use a light-
weight discriminator network with ∼1M learnable param-
eters. We provide the details of the discriminator in Fig.

1-(B). Notice that unlike our main network, we resize all
input image patches to have 256×256 pixels before being
processed by the discriminator. The output of the last layer
in our discriminator is a single scalar value which is then
used in our loss during the optimization, as described in the
main paper.

1.3. Additional Training Details

We use He et al.’s method [15] to initialize the weights of
our encoder and decoder conv layers, while the bias terms
are initialized to zero. We minimize our loss functions using
the Adam optimizer [18] with a decay rate β1 = 0.9 for the
exponential moving averages of the gradient and a decay
rate β2 = 0.999 for the squared gradient. We use a learning
rate of 10−4 to update the parameters of our main network
and a learning rate of 10−5 to update our discriminator’s
parameters.

We train our network on patches with different dimen-
sions. Training begins without the adversarial loss, Ladv,
then Ladv is added to fine-tune the results of our initial train-
ing [22]. Specifically, we begin our training without Ladv
on 176,590 patches with dimensions of 128×128 pixels ex-
tracted randomly from our training images for 40 epochs.
The mini-batch size is set to 32. The learning rate is de-
cayed by a factor of 0.5 after the first 20 epochs. Then, we
continue training on another 105,845 patches with dimen-
sions of 256×256 pixels for 30 epochs (15 epochs without
Ladv and 15 epochs with Ladv) with a mini-batch size of
eight. The learning rates for the main network and the dis-
criminator network are decayed by a factor of 0.5 every 10
epochs. Finally, we fine-tune the trained networks on an-
other 69,515 training patches with dimensions of 512×512
pixels for 20 epochs with a mini-batch size of four and a
learning rate decay of 0.5 applied every five epochs.

We discard training patches that have an average inten-
sity less than 0.02 or higher than 0.98. We also discard
homogeneous patches that have an average gradient mag-
nitude less than 0.06. We randomly left-right flip training
patches for data augmentation.

In the adversarial training, we optimize both the main
network and the discriminator in an iterative manner. At
each optimization step, the learnable parameters of each
network are updated to minimize its own loss function. Our
main network’s loss function is described in the main paper.
The discriminator is trained to minimize the following loss
function [10]:

Ldsc = r (T) + c (Y) , (1)

where r (T) refers to the discriminator loss of recognizing
the properly exposed reference image T, while c (Y) refers
to the discriminator loss of recognizing our corrected image
Y. The r (T) and c (Y) loss functions are given by the
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Figure 3: Comparison of results by varying the number of Laplacian pyramid levels. The peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM) [30], and perceptual index (PI) [1] are shown for each result. Notice that higher
PSNR and SSIM values are better, while lower PI values indicate better perceptual quality. The input image is taken from
our validation set.
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Figure 4: Our framework can deal with both improperly and properly exposed input images producing compelling results.
The input images are taken from our test set.

following equations:

r (T) = − log (S (D (T))) , (2)

c (Y) = − log (1− S (D (Y))) , (3)

where S denotes the sigmoid function andD is the discrim-
inator network described in Fig. 1-(B).

2. Ablation Studies

This section presents details on the ablation studies that
were performed to validate the architecture and loss func-
tion used in the main paper.

2.1. Loss Function

Our loss function (Eq. 1 in the main paper) includes three
main terms. The first term is the standard reconstruction
loss (i.e., L1 loss). The second and third terms consist of
the pyramid and adversarial losses, respectively, which are
introduced to further improve the reconstruction and per-
ceptual quality of the output images. In the following, we
discuss the effect of these loss terms.

Table 1: Results of our ablation study on 500 images ran-
domly selected from our validation set. We show the effects
of: (i) the pyramid loss, Lpyr, and (ii) the number of Lapla-
cian levels, n, in the main network. For each experiment,
we show the values of the peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) [30]. The
best PSNR/SSIM values are indicated with bold for each
experiment.

Pyramid loss Lpyr Number of levels n
w/o w/ n = 1 n = 2 n = 4

PSNR 18.041 18.385 16.984 17.442 18.385
SSIM 0.746 0.749 0.723 0.734 0.749

2.1.1 Pyramid Loss Impact

In Fig. 5 of the main paper, we show the output of each
sub-network when we train our model with and without the
pyramid loss. We observe that the pyramid loss helps to
provide additional supervision to guide each sub-network
to follow a coarse-to-fine reconstruction. In this ablation
study, we aim to quantitatively evaluate the effect of the
pyramid loss on our final results.

We train two light-weight models of our main network
with and without our pyramid loss term. Each model has
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Figure 5: Additional qualitative results. (A) Input images. (B) Results of HDR CNN [7] with Adobe Photoshop’s HDR
tool [6]. (C) Our results. (G) Properly exposed reference images. The input images are taken from our test set.

four 3-layer U-Nets with a total of ∼4M learnable param-
eters, where the number of output channels of the first en-
coder in each U-Net is set to 24.

The training is performed on a sub-set of our training
data for ∼150,000 iterations on 80,000 128×128 patches,
∼100,000 iterations on 40,000 256 × 256 patches, and
∼25,000 iterations on 25,000 512×512 patches. Table 1
shows the results on 500 randomly selected images from
our validation set. The results show that the pyramid loss
not only helps in providing a better interpretation of the task
of each sub-network but also improves the final results.

2.1.2 Adversarial Loss Impact

In the main paper, we show quantitative results of our
method with and without the adversarial loss term. Our
trained model with the adversarial loss term achieves bet-
ter perceptual quality (i.e., lower perceptual index (PI) val-
ues [1]) than training without the adversarial loss term. Note
that there is a fundamental trade-off between the perceptual
quality (i.e., PI) and the pixel-wise similarity (i.e., PSNR
and SSIM) [2]. That is, w/o adversarial loss the pixel-wise
similarity is improved rather than the perceptual quality and
vice-versa.

Fig. 2 shows qualitative comparisons of our results with
and without the adversarial loss. As shown, the network
trained without the adversarial training tends to produce
darker images with slightly unrealistic colors in some cases,
while the adversarial regularization improves the perceptual
quality of our results.

2.2. Number of Laplacian Pyramid Levels

We repeat the same experimental setup described in Sec.
2.1.1 with a varying number of Laplacian pyramid levels
(sub-networks). Specifically, we train a network with n = 1
levels—this network is equivalent to a vanilla U-Net-like

architecture [25]. Additionally, we train another network
with n = 2 (i.e., two sub-networks).

For a fair comparison, we fix the total number of param-
eters in each model by changing the number of filters in the
conv layers. Specifically, we set the number of output chan-
nels of the first layer in the encoder to 48 for the trained
model with n = 1, while we decrease it to 34 for the two-
sub-net model (i.e., n = 2) to have approximately the same
number of learnable parameters. Thus, the trained model in
Sec. 2.1.1, used to study the pyramid loss impact, and the
additional two trained models have approximately the same
number of parameters.

Table 1 shows the results obtained by each model on
the same random validation image subset used to study the
pyramid loss impact in Sec. 2.1.1. Fig. 3 shows a qualita-
tive comparison. As can be seen, the best quantitative and
qualitative results are obtained using the four-sub-net model
(i.e., n = 4 levels).

3. Additional Results and Comparisons
In this section, we provide additional qualitative results.

Fig. 4 shows our results when the input image has no expo-
sure errors. As can be seen, our method produces consistent
output images regardless of the exposure setting of the in-
put image. Additional qualitative comparisons with other
methods on our testing set are shown in Fig. 5–9.

Generalization We provide additional results on images
that are outside our training/testing sets. Fig. 10 shows qual-
itative comparisons with the methods of Yuan and Sun [27]
and Guo et al. [12], which were designed to correct over-
exposure errors in photographs. The source code of these
methods is not available. Thus, the presented input im-
ages and corresponding results by the methods of Yuan and
Sun [27] and Guo et al. [12] are taken from the original pa-
pers [12, 27]. As shown in Fig. 10, our method produces
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Figure 6: Additional qualitative comparisons with other methods in correcting underexposed images. (A) Input images. (B)
Results of CLAHE [31]. (C) Results of WVM [8]. (D) Results of HDR CNN [7] with Adobe Photoshop’s HDR tool [6]. (E)
Results of DPED [17]. (F) Results of DPE [5]. (G) Results of Deep UPE [26]. (H) Our results. The input images are taken
from our test set.

compelling results.

Fig. 11 shows a qualitative comparison using the DICM
image set. Fig. 12 shows a qualitative comparison using the
SID dataset [4]. In the shown example, we rendered the

raw-RGB images provided in the SID dataset to 8-bit JPEG
compressed sRGB image. This 8-bit compressed format is
more challenging compared to dealing with the 12-bit lin-
ear raw images as used by prior work. Though our method
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Figure 7: Additional qualitative comparisons with other methods in correcting overexposed images. (A) Input images. (B)
Results of histogram equalization (HE) [9]. (C) Results of the contrast-limited adaptive histogram equalization (CLAHE)
[31]. (D) Results of the local Laplacian filter [23]. (E) Results of HDR CNN [7] with Adobe Photoshop’s (PS) HDR tool [6].
(F) Results of the DSLR Photo Enhancement dataset (DPED) trained model [17]. (G) Results of deep photo enhancer
(DPE) [5]. (H) Our results. The input images are taken from our test set.

is not targeting this kind of “dark” scenes, it is arguable
that our result is visually on par with the recently pro-
posed method for low-light image enhancement—namely,

the Zero-DCE method [11].

We further examined our model on the testing set used
in [26]. This set has no overlap with our training ex-
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Figure 8: Additional qualitative results of correcting overexposed images. (A) Input images. (B) Results of DPED [17]. (C)
Our results. (G) Properly exposed reference images. The input images are taken from our test set.
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Figure 9: Additional qualitative results of correcting underexposed images. (A) Input images. (B) Results of Deep UPE [26].
(C) Our results. (G) Properly exposed reference images. The input images are taken from our test set.
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Figure 10: Qualitative comparison with the methods of Yuan and Sun [27] and Guo et al. [12]. The input images are taken
from [27] and [12], respectively.

(A) Input image (B) LIME [13,14] (C) HQEC [29] (D) Ours

Figure 11: Additional qualitative results of correcting overexposed images. (A) Input image. (B) Result of LIME [13, 14].
(C) Result of HQEC [29]. (D) Our result. The input image is taken from the DICM image set [19].

amples taken from the MIT-Adobe FiveK dataset [3] and
its input images were processed using a different render-
ing/degradation procedure, as described in [26]. Fig. 13
shows a qualitative comparison between our method and
the recent Zero-DCE method [11] for low-light image en-
hancement. The quantitative results using the testing set
used in [26], are reported in Table 2.

As can be seen, our method achieves on par, sometimes
better, results compared to the state-of-the-art methods de-
signed specifically to deal with underexposure errors. Un-
like these methods, our method can effectively deal with
both under- and overexposure errors, as discussed in the
main paper. Note that we did not fine-tune our method on
either the SID dataset or the set used in [26], before report-
ing our results. Additional qualitative comparisons using
images taken from Flickr are shown in Fig. 14.

Table 2: Comparison with other methods for low-light im-
age enhancement using the test set used in [26].

Method PSNR
White-Box [16] 18.57

Distort-and-Recover [24] 20.97
Deep UPE [26] 23.04
Zero-DCE [11] 15.455

Ours 21.02

4. Potential Applications
In this section, we highlight two potential applications of

our method: (i) photo editing and (ii) image preprocessing.

Photo Editing The main potential application of the pro-
posed method is to post-capture correct exposure errors in
images. This correction process can be performed in a fully
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Figure 12: Qualitative example from the SID dataset [4]. We compare our result with the recent Zero-DCE method [11].

Input image Zero-DCE [11] Ours Properly exposed ref. image

Figure 13: Qualitative comparison with the recent Zero-DCE method [11] on the testing set, used in [26].

automated way (as described in the main paper) or can be
performed in an interactive way with the user. Specifi-
cally, we introduce a scale vector S = [S1, S2, S3, S4]

>

that can be used to independently scale each level in the
pyramid X in the inference stage. The scale vector S is
introduced to produce different visual effects in the final re-
sult Y. In particular, this scaling operation is performed as
a pre-processing of each level in the pyramid X as follows:
S(l=i)X(l=i), s.t. i ∈ {1, 2, 3, 4}. The values of the scale
vector S can be interactively controlled by the user to edit
our network results. Fig. 15 shows different results obtained
by our network in an interactive way through our graphical
user interface (GUI). Our GUI can be used as a photo edit-
ing tool to apply different visual effects and filters on the
input images. Note that we used S = [1.8, 1.8, 1.8, 1.12]

>

in our experiments in the main paper, as we found it gives
the best compelling results (see Fig. 16).

Image Preprocessing Our method can also improve the
results of computer vision tasks by using it as a pre-
processing step to correct exposure errors in input images.
Fig. 17 shows example applications. In these examples, we
show results of face and facial landmark detection of the
work in [28] and image semantic segmentation results ob-
tained by the work in [20, 21]. As shown, the results of
face detection and semantic segmentation are improved by
pre-processing the input images using our method.
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