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1. Proof of Lemma 1
Lemma 1. Assume that the loss L(θ(x), y) is convex in its first argument and that there exists a λ ∈ Rn where λ ≥ 0 and
λ>1 = 1, such that the target distribution is exactly equal to the mixture of source distributions, i.e QT =

∑n
i=1 λiQ

i
S . Set

the target predictor as the following convex combination of the optimal source predictors

θT (x) =

n∑
k=1

λkQ
k
S(x)∑n

j=1 λjQ
j
S(x))

θkS(x).

Recall the pseudo-labeling loss (10). Then, for this target predictor, over the target distribution, the unsupervised loss induced
by the pseudo-labels and the supervised loss are both less than or equal to the loss induced by the best source predictor. In
particular,

L(QT , θT ) ≤ min
1≤j≤n

L(QT , θjS).

Proof. We can see that the left hand-side of the inequality can be upper-bounded by some loss as follows,

L(QT , θT ) =
∫
x

QT (x)L(θT (x), y) =

∫
x

QT (x)L

(
n∑
i=1

λiQ
i
S(x)∑n

j=1 λjQ
j
S(x))

θiS(x), y

)
dx

≤
∫
x

QT (x)

n∑
i=1

λiQ
i
S(x)∑n

j=1 λjQ
j
S(x))

L(θiS(x), y)dx (from Jensen’s inequality)

=

∫
x

QT (x)

n∑
i=1

λiQ
i
S(x)

QT (x)
L(θiS(x), y)dx (from distribution assumption)

=

n∑
i=1

λi

∫
x

QiS(x)L(θ
i
S(x), y)dx (changing the order of summation)

=
∑
i

λiL(QiS(x), θiS)

(1)

Now for the R.H.S. we can write this loss as follows,

L(QT , θjS) =
∫
x

QT (x)L(θ
j
S(x), y)dx

=

∫
x

n∑
i=1

λiQ
i
S(x)L(θ

j
S(x), y)dx

=

n∑
i=1

λi

∫
x

QiSL(θ
j
S(x), y)dx

=

n∑
i=1

λiL(QiS(x), θ
j
S)

(2)

Now recall from main paper that,
θkS = argmin

θ
L(QkS , θ) for 1 ≤ k ≤ n.

.
This means θiS is the best predictor for the source i, which has distribution QiS . Thus we find that L(QiS , θiS) ≤

L(QiS , θ
j
S) ∀j, which implies

∑
i λiL(QiS , θiS) ≤

∑
i λiL(QiS , θ

j
S). This further implies that L(QT , θT ) ≤ L(QT , θjS) ∀j,

which in turn concludes the proof L(QT , θT ) ≤ min
1≤j≤n

L(QT , θjS). Finally, suppose the entries of λ are strictly positive and

let β = argminj L(QT , θjS). Observe that, if there is a source i such that the strict inequality L(QiS , θiS) < L(QiS , θ
β
S) holds,

then the main claim of the lemma also becomes strict as we find

L(QT , θT ) ≤
∑
i

λiL(QiS , θiS) <
∑
i

λiL(QiS , θ
β
S) ≤ min

j
L(QT , θjS).

Verbally, this strict inequality has a natural meaning that the model j is strictly worse than model i for the source data i.



2. Detailed steps of combination rule under source distribution uniformity assumption
See the discussion after Lemma 1 in the main paper for reference.

θT (x) =

n∑
k=1

λkQ
k
S(x)∑n

j=1 λjQ
j
S(x)

θkS(x)

=

n∑
k=1

λkckU(x)∑n
j=1 λjcjU(x)

θkS(x)

=

n∑
k=1

λkck∑n
j=1 λjcj

θkS(x)

(3)

3. Additional Experiments

Figure 1: Weights as model selection proxy. The weights learnt by our framework on Office-31 correlates positively with the
unadapted source model performance. (Left axis corresponds to the red plot and right to the blue plot, best viewed in color.)

From Figure 1, we can clearly see that for the model which gives higher accuracy for the unadapted scenario, it is automati-
cally given higher weightage by our algorithm. As a result, we can easily infer about the quality of the source domain, in
relation to the target, from the weights learnt by our framework.

Effect of weight on pseudo-labeling. We investigate the effect of the weight λ on Lpl. We perform experiments on the Office
dataset by varying the value of λ and plot the results in Figure 2. As shown in the plot, the proposed method performs best at
λ = 0.3
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Figure 2: Effect of λ. The variations in classification as the weight on Lpl is varied. (Best viewed in color)

Effect of outlier source models. Our method is clearly robust to outlier source models. In Table 2 of the main paper, when
MNIST-M is the target, transferring from only USPS, leads to an extremely poor performance of 21.3% - here, USPS is a
strong outlier. Despite the presence of such a poor source, our framework is mostly able to correctly negate the transfer
from USPS, achieving a performance of 93%, close to the best source performance of 94%. On removing USPS as a source,
DECISION outperforms the best source by achieving an accuracy of 94.5%. In the future, we plan to actively use the weights
to simultaneously remove poor sources while adaptation in order to boost the performance.



SOURCE METHOD
C,P,I,S,R
→ Q

Q,P,I,S,R
→ C

Q,C,I,S,R
→ P

Q,C,P,S,R
→ I

Q,C,P,I,R
→ S

Q,C,P,I,S
→ R

AVG.

Multiple(w)

DAN[25] 16.2 39.1 33.3 11.4 29.7 42.1 28.6
DCTN[46] 7.2 48.6 48.8 23.4 47.3 53.5 38.1
MCD[37] 7.6 54.3 45.7 22.1 43.5 58.4 38.6
M3SDA-β[32] 6.3 58.6 52.3 26 49.5 62.7 42.5

Single(w/o)

Source-best 11.9 49.9 47.5 20 41.1 57.7 38
Source-worst 2.3 12.2 2.2 1.1 8.7 4.8 5.2
SHOT[22]-best 18.7 58.3 53 22.7 48.4 65.9 44.5
SHOT[22]-worst 3.8 14.8 3.5 1 11.9 6.6 7

Multiple(w/o)
SHOT[22]-Ens 15.3 58.6 55.3 25.2 52.4 70.5 46.2
DECISION(Ours) 18.9 61.5 54.6 21.6 51 67.5 45.9

Table 1: Results on DomainNet:Q,C,P,I,S and R are abbreviations of quickdraw, clipart, painting, infograph, sketch and real.

DomainNet [32]: This is a relatively new and large dataset where there are six domains under the common object categories,
namely quickdraw (Q), clipart (C), painting (P), infograph (I), sketch (S) and real (R) with a total of 345 object classes in each
domain. Experimental results on this dataset are shown in Table 1. Our method consistently outperforms the best adapted
source baselines (SHOT-best) except for infograph as a target. However the average performance over all the domains as target
is slightly less than the SHOT-Ens. Note that for quickdraw and clipart as target, our method outperforms all the state of the
art methods including source free and with source data single and multi source state-of-the-art DA methods.

Distillation. Our results on using the distillation strategy outlined in Section 5.4 of the main paper are shown in Table 2.
Despite the model compression, the performance remains consistent.

METHOD OFFICE-HOME OFFICE-CALTECH OFFICE

RW PR CL AR A C D W A D W

DECISION (original) 83.6 84.4 59.4 74.5 95.9 95.9 100 99.6 75.4 99.6 98.4
DECISION (distillation) 83.7 84.4 59.1 74.4 96.0 95.7 99.4 99.6 75.4 99.6 98.1

Table 2: Distillation results on object recognition tasks. Performance remains consistent across all datasets despite distilling
into a single target model.


