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1. Additional Benchmark Analysis

In the main paper we mentioned a recent work on point-
cloud shape completion based on the idea of separated fea-
ture aggregation [7]. It uses local features to represent the
known part and keep the original details, while global fea-
tures are exploited for the missing part to describe the la-
tent underlying surface. Since the proposed network is de-
signed to reconstruct the complete shape with ground truth
clouds containing 16384 points, we operated some mini-
mal changing on the architecture to get a fair comparison
on 2048-points ground truth without corrupting its original
nature. Specifically, we started from the Residual Feature
Aggregation (RFA) method, in which the missing part is
represented with residual features between the global shape
and the known part. We considered two variants: in the first
one we generated a coarse output of 1024 points, then re-
fined to 2048 points by the folding module inherited from
PCN [6]. In the second one we dropped the folding module
and we selected the top scored 2048 points at the final atten-
tion module as prediction. We also experimentally verified
that the repulsion loss of the method becomes detrimental
when dealing with a low-resolution ground truth, so we did
not include it in the learning process. This second variant
obtained better results than the first and the corresponding
CD are collected in Table 1. The comparison indicates that
both PF-Net and DeCo largely outperform RFA. The ren-
derings in Figure 1 confirm that RFA produces a reasonable
overall object shape, but the missing part is often noisy and
reconstructed with artifacts.

2. Decoder Output & Frame Dimension

Our decoder includes two SAG Pool layers [3], whose
purpose is to reduce the number of input points down to the
number of points of the missing part. We exploit a hierar-
chical pooling logic in order to predict at different decoder
depth both the frame + missing region Yfm, and the miss-

Category RFA [7] PF-Net [2] DeCo
Airplane 26.747 10.805 10.003

Bag 40.153 38.485 28.508
Cap 47.150 50.450 36.436
Car 59.167 21.640 22.963

Chair 29.227 19.490 16.428
Lamp 64.243 42.910 24.150
Laptop 27.880 11.220 12.706

Motorbike 71.623 19.905 19.136
Mug 80.200 31.880 34.239
Pistol 23.783 10.885 12.266

Skateboard 127.413 12.365 9.861
Table 31.903 20.845 17.120
Guitar 13.357 4.425 4.482
Overall 36.773 20.445 16.517

Table 1. Known Categories - Quantitative. Chamfer Distance on
the point cloud missing region scaled by 104. The lower, the better.
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Figure 1. Known Categories - Qualitative. In order from top to
bottom: chair, guitar, table. RFA shows artifacts and less precise
reconstruction than PF-Net and DeCo.



ing region Ym. The total number of output points at the two
prediction heads depends on the number of pooled feature-
space nodes, which are then decoded from the feature to the
3D space. While the choice of the N2 parameter is con-
strained by the missing part ground truth size (N2 = M ),
we are free to tune N1, as long as it holds N1 ≥M +F . As
specified in the main paper, in case of the standard single
hole analysis, we set M = F = 512, so Xm has dimension
(512, 3), while Xfm has dimension (1024, 3). For the de-
coder we had N1 = 1280 and N2 = 512, thus resulting in
Yfm and Ym respectively with size (1280, 3) and (512, 3).

In Table 2 we show the results obtained by varying
{N1, F}: the CD are always lower than those of the best
competitor PF-Net (20.445). Moreover the obtained results
confirm the effectiveness our parameter choice.

In the main paper we also discussed two robustness tests.
In the case of a single large hole (50% of point cloud miss-
ing, 1024 points out of a whole shape of 2048 points) we
simply dropped the frame condition and removed the two
SAG Pool layers from the decoder, thus we did not use the
frame auxiliary prediction in training. Despite this simpli-
fication, DeCo consistently outperforms its best competitor
PFNet, demonstrating the effectiveness of our architecture
and training procedure also when half of the complete shape
is missing. In the case of two holes, each covering 12.5%
of the point cloud, we kept the condition M = F , so each
crop consists of 256 points with their respective frame of
equal cardinality out of a whole shape of 2048 points. The
results in the main paper have shown how recovering the
complete shape from a multiple-drilled partial input is way
harder than recovering from a single-drilled shape, never-
theless DeCo is still able to outperform all the considered
baselines.

3. Contrastive Learning: Quadruplets vs Pairs

In the main paper we described our strategy to extract
global information from the point clouds via contrastive
learning. Specifically we adopted a variant based on sam-
ple quadruplets, rather than on pairs as in the standard con-
trastive learning solution [1]. We present here a detailed
analysis of this choice. More precisely, Table 3 shows how
using sample pairs can still provide good results, but pass-
ing from pairs to quadruplets allows us to work with a more
manageable batch size, while also providing a further im-
provement in the reconstruction accuracy.

4. DGCNN for Denoising

In all DeCo experiments in the main paper we used at
the local encoder the powerful Graph-Convolutional Point
Denoising network (GPDNet) proposed in [4]. Here we
also present the completion results obtained by replacing
it with a more conventional DGCNN [5] encoder. All the

N1
M=512

F=256 F=512 F=768
1024 19.001 18.129 18.595
1280 17.693 16.517 18.068

Table 2. Known Categories - Single Hole. Chamfer Distance re-
sults scaled by 104, obtained by changing the auxiliary decoder
output and frame dimension.

Contrastive Learning Variants Overall CD
Pairs Batch Size = 98× 2 18.030
Quadruplets Batch Size = 38× 4 16.517

Table 3. Overall average Chamfer Distance scaled by 104, ob-
tained by changing the Contrastive Learning strategy for the global
encoder.

Local Denoising Variants Overall CD Parameters
DeCo GPDNet [4] 16.517 1.66× 106

DeCo DGCNN [5] 19.667 1.13× 106

PF-Net [2] 20.445 76.77× 106

Table 4. Overall average Chamfer Distance scaled by 104, ob-
tained by changing the Denoising Strategy for the local encoder.

other components of DeCo remain the ones already de-
scribed, and we follow the same pre-training procedure
adopted in the main paper for the denoising task (Gaussian
noise, mean=0, standard deviation=0.02) of the simplified
local encoder. The results in Table 4 show that the ob-
tained DGCNN-based lighter version of DeCo still provides
state-of-the-art performance, highlighting the effectiveness
of our training strategy regardless of the specific adopted
graph convolution blocks and backbone. As reference we
also report the PF-Net baseline results and the number of
parameters for all the considered variants which confirms
the significant advantage of DeCo with respect to its best
competitor also in terms of parameter cardinality.

5. Further Training Details

We provide here more details about the global + local
feature aggregation logic. One way to implement the fea-
ture combination is by concatenating the global feature vec-
tor to each point local feature and feeding them to a 1D
conv. layer. In the specific case, the 1D conv. layer has out-
put size 256, which is the dimensionality of the global+local
per-point embedding input to the Decoder. This would un-
necessarily cause the same global features to be processed
N times. We optimized this implementation by separating
global and local weight matrices of the 1D conv. layer and
combining the obtained representations by summation. This
is equivalent to concatenation & conv. but more efficient.



References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-

frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020. 2

[2] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.
Pf-net: Point fractal network for 3d point cloud completion.
In CVPR, 2020. 1, 2

[3] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention
graph pooling. In ICML, 2019. 1

[4] Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, and En-
rico Magli. Learning graph-convolutional representations for
point cloud denoising. In ECCV, 2020. 2

[5] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019. 2

[6] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. Pcn: Point completion network. In 3DV,
2018. 1

[7] Wenxiao Zhang, Qingan Yan, and Chunxia Xiao. Detail pre-
served point cloud completion via separated feature aggrega-
tion. In ECCV, 2020. 1


