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1. Full Proof of Theorem
Theorem 1.1. L2 distance over normalized representa-
tions in the post-pooling layer of an infinite random S-CNN
with patch size P and pooling window size W is equal to
the average ˆMMDK distance between the distributions
of patches of size P within windows of size W in the two
images. The kernel K(p1, p2) of two patches is a robust,
monotonically decreasing function of the L2 distance be-
tween the two patches.

Proof. We first prove a Lemma on fully-connected net-
works.

Lemma: For a fully connected network with ReLU non-
linearity and any depth d, the kernel corresponding to an in-
finitely wide network with random weights (initialized with
σ determined according to the He initialization scheme [2]
and zero biases) can be written as:

K(x1, x2) = ‖x1‖‖x2‖ρd(
x1
‖x1‖

− x2
‖x2‖

)

where ρ(r) is a function that is monotonically decreasing as
a function of the norm of its argument.

Proof. The proof is based on the recursive definition of the
kernel, given by Cho and Saul [1]:

K(d+1)(x1, x2) =
1

π

[
K(d)(x1, x1)K

(d)(x2, x2)
]1/2

J1(θ
(d))

θ(d) = cos−1

(
K(d)(x1, x2)√

K(d)(x1, x1)
√
K(d)(x2, x2)

)

with:
J1(θ) = sin θ + (π − θ) cos(θ)

Using these recursions, it is easy to see that for any d,
K(d)(x1, x1) = ‖x1‖2, K(x2, x2) = ‖x2‖2, and then we
can prove by induction that for any depth the dependence
on the angle between the two inputs remains monotonic,
and this means that the dependence on the difference of two
normalized inputs is also monotonic for any depth. From
figure 1 it is clear that the shape of K becomes more ro-
bust as d grows. It can be shown that the normalized kernel

is monotonically decreasing with depth for every value of
〈x1, x2〉.

If we consider the pre-pooling layer of an infinite ran-
dom S-CNN, it is equivalent to many fully connected net-
works, each working on a single patch of the input image.
From the lemma, this means that the NNGP kernel of each
patch K(p1, p2) corresponds to a robust, monotonically de-
creasing function of the L2 distance between the patches,
weighted by the norm of the two patches. If we use normal-
ized representations, the norm dependence disappears and
K(p1, p2) is a robust, monotonically decreasing function of
the L2 distances between the patches.

As shown in [6], the effect of average pooling on the
NNGP can be written as:

K(x1, x2) =
∑

p1∈x1,p2∈x2

K(p1, p2) (1)

where x1, x2 are the pooling windows in the two images
and p1 ∈ x1 is a patch in the pooling window in the first
image.

Now, if we take L2 distances between the representations
in the post-pooling layers then:

d2(x1, x2) = K(x1, x1)− 2K(x1, x2) +K(x2, x2) (2)

Substituting equation 1 into equation 2 shows that the L2
distance is exactly the MMD between patch distributions in
the pooling windows.

Remark: In the proof above, we assume that all spatial
representations in the S-CNN are normalized per location.
This can be achieved by normalizing the outputs of the first
convolution by dividing by the norm (taken over all chan-
nels at a single location). Due to the property of ReLU,
this will guarantee that at any subsequent layer (after apply-
ing the 1 × 1 convolution and ReLU), the representations
are still normalized per location. If we do not normalize
the representations, an analogous result can be derived us-
ing an identical proof: the L2 distance over representations
in the post-pooling layer will still be equal to the average
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Figure 1. The equivalent kernel for the infinitely wide fully-
connected network with ReLU activation. Kd(x1, x2) values are
normalized to the range [0, 1]. The MMD objective optimum
doesn’t depend on the scale of K.

ˆMMDK distance between the distributions of patches of
size P within windows of size W in the two images. But
the kernel K(p1, p2) will depend not only on the distance
between the two patches but also on their respective norms.

Corollary: Define the Mixture Patch Distribution for a
set of possible outputs Y = {y1...yM} and pooling win-
dow as the distribution of patches drawn uniformly from the
set and assume the number of patches in a pooling window
N →∞. If there exist an image y for which for all pooling
windows its’ patches are distributed according to the Mix-
ture Patch Distribution of Y , then ŷ using a perceptual loss
with an infinite random S-CNN should have the same local
distribution over patches as the Mixture Patch Distribution.

Proof: For every measurable kernel with bounded norm
we can rewrite the MMD distance between two distributions
P and Q as ‖µP − µQ‖2 where µP is the mean embedding
of the distribution P with respect to the RKHS of K. When
N →∞ we can replace the empirical estimate of ˆMMDK

with the MMD distance, and the embedding µ̂ which mini-
mizes the average MMD with respect to all images in Y is
1
M

∑
µPyi

. Assuming that y exists, its’ patch distribution
is clearly mapped to µ̂ for all pooling windows. Assuming
K is characteristic, we get that the mapping of distributions
to mean embeddings is injective and thus the patch distribu-
tion of ŷ agrees with y.

2. Full Implementation Details for the Experi-
mental Setup

2.1. Losses Implementation

For all random networks, filters were drawn from i.i.d
Gaussian distribution with variance determined according
to the He initialization scheme [2] at each optimization step
and biases were fixed to 0. For the 2AFC experiments the
mean of every filter (with respect to every input color chan-

nel) was reduced in order to ignore the DC component of
each channel.

VGG loss - For all experiments we
use post-activation features from layers
CONV1 2, CONV2 2, CONV3 3, CONV4 3, CONV5 3.
Input images are normalized using the RGB mean and
standard deviations of ImageNet. For the GIM and super-
resolution experiments, features are normalized for every
layer and spatial location and then compared using L2
distance.

MMD loss - For all experiments we compute MMD dis-
tance on patches of size 3 over windows of size 32 with
stride of 16 pixels. We varied σ for different applications
but it was always in the range 0.54 − 0.72. Similarly to
the random networks, for the 2AFC task the DC compo-
nent of each color channel was ignored. We use either 512,
1024 or 2048 random projections for the Random Fourier
Features approximation depending on the available compu-
tational resources at each of the experiments, but prelimi-
nary results show that lower number of features could pro-
duce comparable results at least in some settings. For the
extended MMD loss, we use σ = 0.9 for the local patch
loss and ignore the channel DC value for the MMD term.
The weight of the local term compared to the MMD term is
0.025.

2.2. Generalized Mean Optimization Task

For every problem instance of the described problem set-
tings, we sample 50 target examples. For every loss evalu-
ated, we initialize the image with the mean of the 50 ex-
amples (equivalent to pretraining with L2 loss). The image
value is optimized with PyTorch [7] through SGD with the
commonly used Adam optimizer [4] with default parame-
ters and learning rate of 0.01, on random batches of 5 im-
ages for 400 epochs. Optimizing such losses without any
additional regularization is doomed to fail, thus as in ev-
ery implementation of CNN-based perceptual loss, we add
a weighted pixel level L2 loss to the objective. The learning
rate, as well as the L2 weight and value of σ for the MMD
loss, were chosen over a small set of examples not used for
the quantitative comparison. The predicted image is passed
through tanh activation during optimization to ensure that
all predicted pixels are within valid range. Since the sliced
Wasserstein distance based metric introduced by [3] origi-
nally aims to compare samples of the same size out of the
two distributions, we randomly sample balanced (one per
problem instance) sets from the original images without re-
placement and average the distance across samples.

StyleGAN - To generate a problem instance for the
StyleGAN task, first an initial z is drawn from z ∼ N (0, I).
Then for every example we add noise from a smaller Gaus-
sian, such that zi = z + ηi for η ∼ N (0, 0.04I) and all the
zi’s are normalized such that they will have the same norm
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Figure 2. Sliced Wasserstein Distance over patches in different Laplacian Pyramid scales [3] on our generalized mean optimization tasks for
all losses. MMD and VGG (either trained or randomly initialized) outperform the MSE. Adding local patch loss term in MMD++ improves
greatly performance on StyleGAN image sets (where visual artifacts are noticable for the MMD loss) at the cost of slight degradation for
the spatial transformations problem set.

as z. To obtain the set of images, all zi’s are fed to the of-
ficial pretrained (on FFHQ data set) generator using trunc-
tation with ψ = 0.75, to avoid generator failures. We use
the model trained on the maximal resolution (1024× 1024)
and then resize back to 128× 128 to minimize the effect of
possible GAN artifacts in high frequencies.

Spatial Transformations - For every problem instance,
a random image was drawn from ImageNet and resized such
that its short side is of 256 pixels and the aspect ratio is
preserved. Then, for each example, a random square crop
of size 128 is drawn within a [−4, 4] range from the center
crop at each direction.

2.3. Super Resolution

For the neural network architecture we use a modified
version of the SRGAN architecture (that obtains close to
state of the art results for the same task) presented in [5]
where the last convolution kernel size is reduced from 9×9
to 3 × 3 to reduce the computational cost of training. As a
training set, we draw 10,000 random examples from Ima-
geNet. At training, the images are randomely cropped to a
128 × 128 image which is then down scaled by a factor of
×4 using bicubic interpolation. All models are trained for
100 epochs with batch size of 8 which translates to 125,000

training iterations. All models are optimized with the Adam
optimizer with the default parameters in PyTorch, an ini-
tial learning rate of 1e−3 which is then reduced by a fac-
tor of 2 three times during training. All hyper-parameters
are chosen based on the performance on another random
held-out set from ImageNet. We experimented with differ-
ent configurations of VGG loss based on previous works
on super-resolution (with / without normalization, using
onlyCONV2 2, replacing the max-pool layers with average
pooling, adding total variation regularization) and found ei-
ther worse or similar performance on held-out set. Thus, for
our final version, we stick with the same configuration as in
the rest of the experiments. During evaluation, test images
are cropped such that both their height and width will be
divisible by a factor of 4 before resizing.

3. Additional Results

Additional qualitative results for the different loss func-
tions for the GIM task are available in figure 3 and fig-
ure 4. Figure 2 shows quantitative comparison of the ex-
tended MMD loss (MMD++) and the basic MMD loss on
the same problem sets. Very strong periodic artifacts can be
seen in the MMD results for some of the spatial transfor-
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mations sets but combining the MMD loss with local patch
loss (equivalent to pre-pooling layers of S-CNN) removes
those artifacts. Super-resolution results for addition exam-
ples from BSD100 appear in figure 5.

Figure 6 shows how different modifications of the ran-
dom VGG loss contribute to the final qualitative result. Fig-
ure 7 shows GIM experiments for which trained and ran-
dom VGG behave differently. Using learned filters for the
first convolution and random weights for the rest of the lay-
ers leads to generalized means mcuh more similar to the
trained network, indicating that again the success of the
trained VGG is not due to some semantic representation of
the images.
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Figure 3. A random set of results for the different losses on the Generalized Image Mean optimization task for StyleGAN generated images.
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Figure 4. A random set of results for the different losses on the Generalized Image Mean optimization task for the spatial transformations
problem sets.
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Figure 5. Additional qualitative results for the super-resolution models on the BSD100 data set.
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Figure 6. The effect of different loss modifications for random VGG. Results on the spatial transformations image optimization problem
set. T stands for trained model, R for randomely initialized model, S for stochastic model (model re-initialized at each iteration) and N for
normalization of the representation along the channel axis prior to loss computation). Clearly, both re-initialization and normalization are
necessary to obtain results comparable to pre-trained VGG with a random network.

All Trained

All Random
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Figure 7. Comparison of VGG perceptual losses with different levels of supervision on random CelebA-HQ images and their 9 nearest
neighbors. ”All trained” and ”All random” use the same configuration as in the rest of the paper. In ”First trained” the weights of the first
convolution are set to the ones of the trained model while the rest of the convolutions are randomly initialized at every iteration. Problem
instances in which the difference between the trained and random are more pronounced are marked in red. Adding learned filters to the
first layer results in generalized means similar to the trained model.
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Figure 8. Qualitative comparison of the MMD loss using the exact objective and approximation with random Fourier features.
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