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Figure 1: The diagram of the CIPS generator (default ver-
sion).

Modification # parameters (mln)

CIPS-base 43.8
CIPS-NE 10.2
CIPS-default 45.9

StyleGANv2 30.0

Table 1: The number of parameters for different version of
the CIPS generator. For reference, the number of parame-
ters within the StyleGANv2 generator is also given.

1. Architecture details

In this section we provide additional information about
the default version of our CIPS generator (Fig. 1). In to-
tal, its backbone contains 15 fully connected layers. The
first layer projects concatenated coordinate embeddings and
Fourier features into the joint space with the dimension of

512. Next, the following layer pattern is repeated seven
times: the representation is put through two modulated
fully-connected layers and a projection to RGB color space
is computed. The projections coming from the seven itera-
tions are summed together to create the final image. Sim-
ilarly to StyleGANv2 we add properly broadcasted noise
maps of size H ×W in every ModFC layer (not shown in
Fig. 1). We also adopt from StyleGANv2 other settings,
including leaky ReLU activation with the slope 0.2, NTK-
parameterization, exponential moving average for weights,
antialiased bilinear down/upsampling.

Our model is trained with a standard non-saturating lo-
gistic GAN loss with R1 penalty [6] applied to the discrim-
inator D. The discriminator has a residual architecture, de-
scribed in [3] (we have deliberately kept the discriminator
architecture intact). Networks were trained by Adam opti-
mizer [4] with learning rate 2× 10−3 and hyperparameters:
β0 = 0, β1 = 0.99, ε = 10−8.

The number of parameters for the different modifications
of the CIPS generator discussed in the paper are given in
Tab. 1.

2. Patch-based generation
To show one benefit of coordinate-based approach, we

demonstrate the results of memory-constrained training,
where the discriminator observes patches at lower resolu-
tion than the full image (inspired by the GRAF system [8]).
Since pixel generation is conditionally-independent, at each
iteration only low-resolution patches need to be generated.
Thus, only the following K × K patch is synthesized and
submitted to the discriminator:

PK,σ (u, v) = {G (u+ iσ, v + jσ; z) | (i, j) ∈ mgrid (K,K)},

where 0 ≤ u < W − (K − 1)σ and 0 ≤ v < H −
(K − 1)σ are the coordinates of the corner pixel of the
patch. For σ = 1 this produces dense patch, while for
σ > 1 a dilated patch with increased receptive field is ob-
tained. Applying this patch sampling to real images before
putting them into the discriminator may be thought of as an
example of a differentiable augmentation, the usefulness of
which was recently proved by [1, 10].
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Dataset Image size Patch size FID

FFHQ
256

64 11.79
128 9.08
256 4.38

1024 256 11.57
512 10.07

LSUN-Churches 256
64 11.53
128 7.08
256 2.92

Table 2: Frechet Inception Distance (FID) values for CIPS
models trained on patches of varying receptive field and
fixed resolution. The results for patch-based training are
worse than the default training procedure, in which the dis-
criminator observes the full image.

Tab. 2 reports the quality (FID) for CIPS generators
trained on patches of sizes 64×64 and 128×128, while the
resolution of full images equals 256×256. Fig. 2 shows the
outputs of models, trained with the patch-based pipeline. In
our experiments, training with smaller size of patches de-
grades the overall quality of resulting samples.

For images with high resolution 1024×1024, CIPS gen-
erator was trained progressively starting from 256 × 256
initialization. See Tab. 2 and Fig. 6 for results.

3. Additional results
3.1. Panorama synthesis

As CIPS is built upon a coordinate grid, it can rela-
tively easily use non-Cartesian grids. To show this, we thus
adopt a cylindrical system to produce landscape panoramas.
The training setup is as follows. We uniformly sample a
256 × 256 crop from the cylindrical coordinate grid and
train the generator to produce images using these coordi-
nate crops as inputs. A similar idea was also explored in
[5]. We note, however, that during training we do not use
any real panoramas in contrast to other coordinate-based
COCO-GAN model [5]. Fig. 3a and 3b provide examples
of panorama samples obtained with the resulting model.

As each pixel is generated from its coordinates and style
vector only, our architecture admits pixel-wise style inter-
polation (Fig. 3c). In these examples, the style vector blends
between the central part (the style of Fig. 3a) and the outer
part (the style of 3b). We also demonstrate more samples of
cylindrical panoramas in Fig. 8.

3.2. Samples from CIPS

In Fig. 7 and 6, we provide additional samples from CIPS
generators trained on different datasets.

Although we do not apply mixing regularization [2] at
train time, our model is still capable of layer-wise combina-

LSUN-Churches

FFHQ

Figure 2: Samples from CIPS generators learned with
memory-constrained patch-based training. Within every
grid, the top row contains images from models trained with
patches of size 128 × 128 and the bottom row represents
outputs from training on 64 × 64 patches. While the sam-
ples obtained with such memory-constrained training are
meaningful, their quality and diversity are worse compared
to standard training.

Generator W W+

StyleGANv2 0.63 0.75
CIPS 0.70 0.81

Table 3: SSIM for random images from CelebA-HQ pro-
jected into the latent space of two generators. CIPS obtains
a better result both in case of encoding to a single style vec-
tor and when projecting to an extended style space.

tion of latent variables at various depth (see Fig. 10). The
examples suggest that similarly to StyleGAN, different lay-
ers of CIPS control different aspects of images.

3.3. Projection into the latent space

We compared the optimization-based inversion in CIPS
and in StyleGANv2 trained on FFHQ-256 for 35 random
images from CelebA-HQ. During inversion we minimize
over the L1+VGG loss over the latent space. The results in
terms of structural similarity (SSIM) are reported in Tab. 3.
The qualitative comparison showing a typical advantage of
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(a) (b)
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Figure 3: Panorama blending. We linearly blend two upper images from CIPS generator trained on the Landscapes dataset
with a cylindrical coordinate system. The resulting image contains elements from both original panoramas: land and water
integrated naturally.

Figure 4: Results of encoding an image to the latent space.
Left: input image; middle: CIPS W+ inversion; right:
StyleGANv2 W+ inversion. Our model preserves more
fine-grained details (e.g. note the earring).

our method is illustrated in Fig. 4. We hypothesize CIPS
gets better scores due to both the greater number of layers
and pixel-wise computation prior.

4. Nearest neighbors

To assess the generalization ability of CIPS architecture,
we also show the samples from the model trained on the
FFHQ face dataset alongside the most similar faces from
the train dataset. To mine the most similar faces, we extract
faces using the MTCNN model [9], and then compute their
embeddings using FaceNet [7] (the public implementation
of these models1 was used). Fig. 9 shows five nearest neigh-
bors (w.r.t. FaceNet descriptors) for each samples. The sam-
ples generated by the model are clearly not duplicates of the
training images.

1https://github.com/timesler/facenet-pytorch

Figure 5: Visualisation of three main principal compo-
nents of coordinate embeddings for CIPS models, trained
on Landscapes (left) and LSUN-Churches (center). As
these datasets are not as aligned as the face dataset, there
is less recognizable structure in the learned coordinate em-
beddings. The bottom horizontal structure in the LSUN-
Churches case is likely due to frequent watermark pattern
in the dataset (a sample from the model with such water-
mark is shown on the right).

5. Coordinate embeddings

We also run the Principle Components Analysis (PCA)
for coordinate embeddings of models trained on Land-
scapes and LSUN-Churches images (similar pattern for the
FFHQ dataset is shown in the main paper). Fig. 5 provides
the visualisation for the three main components. Note, that
as these datasets are as aligned as FFHQ, there is consid-
erably less spatial structural information in the learned em-
beddings.
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Figure 6: Top: High-resolution samples from CIPS trained on FFHQ-1024 with patch-based training; bottom: samples after
training on FFHQ-512 and Landscapes-512. Note that images are JPEG-compressed.
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LSUN-Churches Landscapes

Satellite-Landscapes Satellite-Buildings

Figure 7: Samples from CIPS generators trained on various datasets. The top row of every grid shows real samples, and the
remaining rows contain samples from the models. The samples from CIPS generators are plausible and diverse.
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Figure 8: Additional samples of cylindrical panoramas, generated by the CIPS model trained on the Landscapes dataset. The
training data contains standard landscape photographs from the Flickr website. No panoramas are provided to the model
during training.

Figure 9: Nearest neighbors for generated faces. Within each row, we show a sample from the model on the left. The
remaining columns contain real images that are closest to the respective sample in terms of the FaceNet [7] descriptor. The
visualization suggests that the CIPS model generalizes well beyond memorization of the training dataset.
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Figure 10: Layer-wise style mixing. The two leftmost columns contain source images A and B. In the rightmost three
columns, we replace the latent code w of A with the latent code w of B at layers (left to right): 6-8, 3-5, 1-2. The visualization
suggests that layers 1-2 control the pose and the shape of the head, the middle layers (3-5) control finer geometry such as the
shape of eyes, eyebrows and nose, and the final layers (6-8) controls the skin color and the textures. Interestingly, this CIPS
model was trained without layerwise mixing, and therefore such decomposition likely arises from the architectural prior.
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