
Appendix

A. Definitions of Equivariance and Invariance
For a specified function f : X → Y as well as a specified

group action G, f is said to be equivariant with respect to
transformation action g ∈ G if,

f(g ◦ x) = g ◦ f(x), x ∈ X (6)

Analogously, f is said to be invariant to transformations g ∈
G when the following equation is satisfied:

f(g ◦ x) = f(x), x ∈ X (7)

B. Theoretical Proof of Equivariance
Lemma 1. Given a discrete 2D rotation group† R ⊂
SO(2), where R = {ri ∈ R3×3, i = 1, 2, ..., L}, then the
proposed spatial point transformer is an equivariant map
for the 2D rotation groupR.

Proof: For a local patch Ps, the spatial point transformer
in our framework can be regarded as a mappingMv from
Ps to cylindrical volume C ∈ RJ×K×L×kv×3 : R3×|Ps| →
RJ×K×L×kv×3. For a group action ri in R, suppose
P̃s = ri ◦ Ps = riP

s, and the rotated local neighbouring
set P̃jk(l+i) = riPjkl. On the other hand, for the rotation
matrix defined in Eq. 3, we have Rjkl = Rjk(l+i)112ri.
Then, the (jth, kth, lth) element cpjkl of cylindrical volume
C satisfies:

cpjkl = RjklPjkl = Rjk(l+i)riPjkl

= Rjk(l+i)P̃jk(l+i) = cp̃jk(l+i),
(8)

where cp̃jk(l+i) ∈ C̃, which is the cylindrical volume cor-

responding to the P̃s . Based on Eq. 8, we can infer that
cpjk(l−i) = cp̃jkl, hence the transformed cylindrical volume

C̃ can be formulated as:

C̃ =Mv(ri ◦Ps) =Mv(P̃
s)

= [cp̃111, ..., c
p̃
jkl, ..., c

p̃
JKL]

= [cp11(1−i), ..., c
p
jk(l−i), ..., c

p
JK(L−i)],

(9)

where cpjkl = cpjk(l+L) if l < 1, due to the periodic property
of the cylindrical volume in the XY plane. On the other
hand, ri ◦ Mv means rotating the cylindrical volume C
around the Z-axis, that is:

ri ◦Mv(P
s) = ri ◦ [cp111, ..., c

p
jkl, ..., c

p
JKL]

= [cp11(1−i), ..., c
p
jk(l−i), ..., c

p
JK(L−i)]

=Mv(ri ◦Ps),

(10)

†The minimum rotation unit depends on the way partion along the az-
imuth axis. i.e., 2π

L
.

which completes our proof that the spatial point transformer
Mv is an equivariant map for the rotation groupR.

Lemma 2. Given a discrete 2D rotation group R ⊂
SO(2), where R = {ri ∈ R3×3, i = 1, 2, ..., L}, then
3DCCN is an equivariant map for the 2D rotation group
R.

Proof: The proposed 3D cylindrical convolution can be
formulated as a set of convolution filter ψi on the cylindrical
feature maps f :

(f ∗ ψi)(ρ, z, θ) =∑
d

∑
j

∑
k

∑
l

fd(j, k, l)ψ
i
d(j − ρ, k − z, l − θ), (11)

where ρ, θ and z denote radial distance, azimuth angle and
height, respectively. d is the number of channels in feature
map.

Suppose a group action ri in R operating on cylindrical
feature maps f , we have (ri◦f)(ρ, z, θ) = f(ρ, z, θ−i). To
clarify, the ri-transformed feature maps ri ◦ f at the coor-
dinate (ρ, z, θ) is equivalent to find the value in the original
feature map f at the coordinate (ρ, z, θ − i). Leaving out
the summation over feature maps for clarity, we have:

((ri ◦ f) ∗ ψi)(ρ, z, θ) =∑
j

∑
k

∑
l

f(j, k, l − i)ψi(j − ρ, k − z, l − θ). (12)

Using the substitution l → l + i, then Eq. 12 can be trans-
formed into:

((ri ◦ f) ∗ ψi)(ρ, z, θ)

=
∑
j

∑
k

∑
l

f(j, k, l)ψi(j − ρ, k − z, l − (θ − i))

= (f ∗ ψi)(ρ, z, θ − i)
= (ri ◦ (f ∗ ψi))(ρ, z, θ),

(13)

which completes our proof that 3DCCN is an equivariant
map for the 2D rotation groupR.

C. Detailed Network Architecture
Using 3D Cylindrical Convolution (3D-CCN) as a ba-

sic operator, we build a hierarchical learning architecture
as depicted in Figure 6. To ensure the reproducibility of
our framework, we also provide detailed information on the
kernel size, stride, and the number of filters in this figure.
A number of cylindrical convolution layers are stacked to-
gether to progressively learn descriptive, yet compact local
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Figure 6: Detailed architecture of our proposed 3D cylindrical convolution networks.

feature representations. In particular, the maximum num-
ber of channels used in our cylindrical feature map is 128,
which is much smaller than 1024 used in D3Feat [2]. This
further makes our network very lightweight and less prone
to overfitting.

D. Discussions of Equivariance and Invariance
In this paper, the invariant features, acquired by max-

pooling the equivariant cylindrical features, are used for
correspondence matching. Actually, combining invariant
and equivariant features is an interesting idea to explore.
Similar to [15], our SpinNet can be extended to direct
pairwise registration with minor modifications. The point
correspondences can be firstly estimated through invari-
ant feature matching, and then the relative transformation
can be calculated based on the discrepancy between equiv-
ariant features of each pair of point correspondence. On
the other hand, we can also calculate a canonical orienta-
tion for each patch based on its equivariant feature sim-
ilar to [51], thereby further estimating the relative trans-
formation between two paired patches. In this case, each
pair of correspondence correlates with a transformation hy-
pothesis, hence the final transformation to align two point
clouds can be readily obtained using clustering. Overall,
compared with existing transformation calculation methods
such as RANSAC, combining invariant and equivariant fea-
tures can eliminate the combinatorial explosion of feature
correspondences, but also improve the reliability of the es-
timated transformation [26].

E. Relating to Prior Works
Despite the resemblance of vocabulary, our SpinNet dif-

fers from SpinImages (SIs) [30] and 3D Shape Contexts
(3DSC) [19] in several aspects: (1) Rotation invariance.
Both SIs and 3DSC rely on the handcrafted point density,
while our SpinNet explicitly transforms the point clouds
into cylindrical volumes based on the spatial point trans-
former, enabling rotation invariance with end-to-end opti-

mization. (2) Descriptiveness. Both SIs and 3DSC encode
the local surface by simply counting the number of points
that fall into each bin, while our SpinNet leverages the pow-
erful neural feature extractor to learn local geometrical pat-
terns from each spherical voxel and its local context. Hence,
the learned local feature is descriptive and robust. (3) Com-
pactness. Our descriptor is more compact (32 channels),
compared with SIs (225) and 3DSC (1980) descriptors.

F. Detailed Evaluation Metrics
We further provide the detailed evaluation metrics used

in our experiments (Sec. 4).

Evaluation Metrics on 3DMatch and ETH. We adopt
Feature Matching Recall (FMR) as the main evaluation
metric to evaluate the performance of the learned descrip-
tors. Similar to [5, 14, 13, 8], we also provide a formal
definition for each metric as follows.

First, suppose there are a total ofH pairs of fragments in
the 3DMatch dataset, where the overlap is greater than 30%.
Each pair of fragments Ph and Qh can be aligned by the
ground-truth rigid transformation Th = {Rh, th}. Then,
we randomly select n points from the two point clouds to
obtain Pn

h = {p1,p2, ...,pn} and Qn
h = {q1,q2, ...,qn}.

In particular, a set of point correspondences Ωh between
Pn
h and Qn

h is also generated by applying nearest neighbor
search NN in the feature spaceM:

Then the average feature matching recall on the
3DMatch dataset is defined as:

FMR =

1

H

H∑
h=1

1

([ 1

|Ωh|
∑

(pi,qj)∈Ωh

1(‖p′i − qj‖ < τ1)
]
> τ2

)
,

(14)

where p′i = Rhpi + th, || · || denotes the Euclidean dis-
tance, τ1 and τ2 is the inlier distance threshold and inliner
ratio threshold, respectively. 1 is the indicator function. Ωh



denotes a set of point correspondences betweenPn
h andQn

h .
In particular, it is generated by applying nearest neighbor
search NN in the feature spaceM:

Ωh = {{pi,qj}|M(pi) = NN(M(qj),M(Pn
h )),

M(qj) = NN(M(pi),M(Qn
h))}.

(15)

Evaluation Metrics on KITTI. Different from the in-
door 3DMatch dataset, the evaluation metrics on the KITTI
dataset are Relative Translational Error (RTE), Relative
Rotation Error (RRE), and Success Rate (SR), respectively.
According to the definitions in [39, 60, 8], for a pair of frag-
ments Ph and Qh, the relative rotation error RRE is calcu-
lated as:

RRE = arccos

(
trace(R̂T

hRh)− 1

2

)
180

π
, (16)

where Rh and R̂h denote the ground-truth and the esti-
mated rotation matrix, respectively. Analogously, the rel-
ative translation error RTE can be calculated by:

RTE =
∥∥t̂h − th

∥∥ , (17)

where th and t̂h denote the ground-truth and the estimated
translation matrix, respectively. Finally, success rate SR is
defined as:

SR =
1

H

H∑
h=1

1

(
RREh < 2m && RTEh < 5◦

)
. (18)

G. Implementation Details

Here we provide extra implementation details in this sec-
tion. The detailed hyperparameter settings of our SpinNet
on different datasets are listed in Table 8. In particular,
we keep the same parameter settings as the training dataset
when generalized to unseen datasets, except for the sup-
port radius R and query radius Rv , due to the varying point
densities in different datasets. Specifically, we follow the
scheme in D3Feat [2] to adaptively adjust the radius accord-
ing to the ratio.

Dataset J K L R Rv kv

3DMatch [65] 9 40 80 0.3m 0.04m 30
KITTI [20] 9 30 60 2.0m 0.30m 30

ETH [46] 9 40 80 0.8m 0.10m 30

Table 8: The hyperparameters set by our method in different
datasets.

H. Varying Hyperparameters

We further evaluate the performance of our SpinNet un-
der varying parameters. For clarity, we have conducted pre-
liminary experiments by arbitrarily combining the varying
J ,K,L (J = {7, 9, 11},K = {40, 60, 80},L = {20, 30, 40})
and report the quantitative results on the 3DMatch dataset
in Table 9. It can be seen that the performance difference in
FMR is less than 0.5%. This means that SpinNet is robust
and not sensitive to varying hyperparameters.

J K L R Rv kv FMR (%) STD

7 20 40 0.3m 0.04m 30 97.8 2.0
7 30 60 0.3m 0.04m 30 97.5 1.8
7 40 80 0.3m 0.04m 30 97.4 1.8
9 20 40 0.3m 0.04m 30 97.6 1.9
9 30 60 0.3m 0.04m 30 97.7 1.9
9 40 80 0.3m 0.04m 30 97.6 1.9
11 20 40 0.3m 0.04m 30 97.5 1.8
11 30 60 0.3m 0.04m 30 97.5 1.8
11 40 80 0.3m 0.04m 30 97.6 1.9

Table 9: Quantitative results of our method under varying
hyperparameters on the 3DMatch dataset.

I. Rotation Augmentation and Distribution

According to the results in Table 10 and Table 11, it can
be seen that FCGF [8] and D3Feat [2] are robust again rota-
tion. Fundamentally, the good performance of D3Feat and
FCGF on the rotated 3DMatch dataset relies on extensive
rotation-based data augmentation. However, the D3Feat
and FCGF models trained on the rotated 3DMatch cannot
generalize to ETH and KITTI dataset, because these three
datasets (3DMatch, ETH, and KITTI) have significantly dif-
ferent rotation distributions. For illustration, we show the
differences of rotation distributions in Fig. 7. In particu-
lar, the KITTI and ETH datasets only have SO(2) rotations
(Fig. 7b), while the original and rotated 3DMatch datasets
have different SO(3) rotations. However, for these three
datasets, our SpinNet can well generalize across them all
without relying on any data augmentation, demonstrating
that our framework is indeed effective to overcome the ro-
tation variance.

J. Additional Results on 3DMatch

For comparison, we also report the detailed quantitative
results of our SpinNet on the 3DMatch dataset in Table 10
and the rotated 3DMatch dataset in Table 11.



FPFH [48] SHOT [55] 3DMatch [65] CGF† [32] PPFNet [14] PPF-FoldNet [13] PerfectMatch [22] FCGF [8] D3Feat [2] LMVD [37] Ours

Kitchen 30.6 17.8 57.5 46.1 89.7 78.7 97.0 - - 99.4 99.2
Home 1 58.3 37.2 73.7 61.5 55.8 76.3 95.5 - - 98.7 98.1
Home 2 46.6 33.7 70.7 56.3 59.1 61.5 89.4 - - 94.7 96.2
Hotel 1 26.1 20.8 57.1 44.7 58.0 68.1 96.5 - - 99.6 99.6
Hotel 2 32.7 22.1 44.2 38.5 57.7 71.2 93.3 - - 100.0 97.1
Hotel 3 50.0 38.9 63.0 59.3 61.1 94.4 98.2 - - 100.0 100.0
Study 15.4 7.2 56.2 40.8 53.4 62.0 94.5 - - 95.5 95.6
MIT Lab 27.3 13.0 54.6 35.1 63.6 62.3 93.5 - - 92.2 94.8

Average 35.9 23.8 59.6 47.8 62.3 71.8 94.7 95.2 95.8 97.5 97.6
STD 13.4 10.9 8.8 9.4 10.8 10.5 2.7 2.9 2.9 2.8 1.9

Table 10: Average recall (%) of different methods on the 3DMatch benchmark with τ1 = 10cm and τ2 = 0.05. The symbol
’-’ means the results are unavailable and † means the results are reported from [13], which is different from Table 1.

FPFH [48] SHOT [55] 3DMatch [65] CGF† [32] PPFNet [14] PPF-FoldNet [13] PerfectMatch [22] FCGF [8] D3Feat [2] LMVD [37] Ours

Kitchen 29.1 17.8 0.4 44.7 0.2 78.9 97.2 - - - 99.0
Home 1 59.0 35.6 1.3 66.7 0.0 78.2 96.2 - - - 98.7
Home 2 47.1 33.7 3.4 52.9 1.4 64.4 90.9 - - - 96.2
Hotel 1 30.1 21.7 0.4 44.3 0.4 67.7 96.5 - - - 99.6
Hotel 2 30.0 24.0 0.0 44.2 0.0 62.9 92.3 - - - 97.1
Hotel 3 51.9 33.3 1.0 63.0 0.0 96.3 98.2 - - - 100.0
Study 15.8 8.2 0.0 41.8 0.0 62.7 94.5 - - - 94.9
MIT Lab 41.6 62.3 3.9 45.5 0.0 67.5 93.5 - - - 94.8

Average 36.4 23.4 1.1 49.9 0.3 73.1 94.9 95.3 95.5 96.9 97.5
STD 13.6 9.5 1.2 8.9 0.5 10.4 2.5 3.3 3.5 - 1.9

Table 11: Average recall (%) of different methods on the rotated 3DMatch benchmark with τ1 = 10cm and τ2 = 0.05. The
symbol ’-’ means the results are unavailable and † means the results are reported from [13], which is different from Table 1.

Figure 7: Rotation distribution of different datasets by plot-
ting three Euler angles in each paired fragments.

K. Additional Qualitative Results.

As illustrated in Sec. 4.3, our SpinNet has demonstrated
superior quantitative generalization performance across dif-
ferent datasets with different sensor modalities. Here, we
further show additional qualitative results in this section.

Additional qualitative results on the 3DMatch dataset.
We first show the additional qualitative results achieved by
FCGF [8], D3Feat [2], and our SpinNet on the 3DMatch
dataset in Fig. 8. It can be seen that the FCGF and D3Feat
are prone to mismatching the fragments when the two input
partial scans have relatively significant differences. How-
ever, our simple SpinNet can always achieve consistent reg-
istration performance on this dataset, despite only being
trained on the outdoor KITTI dataset with sparse LiDAR
point clouds.

Additional qualitative results on the KITTI dataset.
Then, we show the extra qualitative results achieved by
FCGF [8], D3Feat [2], and our SpinNet on the KITTI
dataset in Fig. 9. We can clearly see that the point
cloud in the KITTI dataset is significantly different from
the point cloud in 3DMatch, since the KITTI dataset is
mainly composed of large-scale, sparse, and partial Li-
DAR scans. As shown in Figure, FCGF and D3Feat tend
to misalign the input fragments when the scene contains
lots of geometrically-similar objects (e.g., cars). However,
our method can still achieve satisfactory registration results
when only trained on the indoor 3DMatch dataset. This
further validates the superior generalization ability of our
method.
Additional qualitative results on the ETH dataset. We
finally show the extra qualitative results achieved by
FCGF [8], D3Feat [2], and our SpinNet on the ETH dataset
in Fig. 10. Compared with the 3DMatch and KITTI data
sets, the ETH dataset is collected by static terrestrial lasers
in outdoor scenes, and is mainly composed of bushes and
vegetation. As shown in Figure, it is highly challenging for
FCGF and D3Feat to successfully align the input scans to-
gether, since this dataset suffers from issues such as noise,
clutter, and occlusions. Nevertheless, the proposed SpinNet
can still achieve excellent performance on this dataset.



Fragment 1 Fragment 2 D3Feat [2]FCGF [7] Ours Ground Truth

Figure 8: Additional qualitative results achieved by FCGF [8], D3Feat [2], and our SpinNet on the 3DMatch dataset. Note
that, all methods are only trained on the outdoor KITTI [20] dataset. Red boxes/circles show the failure cases.



Fragment 1 Fragment 2 D3Feat [2]FCGF [7] Ours Ground Truth

Figure 9: Additional qualitative results achieved by FCGF [8], D3Feat [2], and our SpinNet on the KITTI dataset. Note that,
all methods are only trained on the indoor 3DMatch [65] dataset. Red boxes show the failure cases.
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Figure 10: Additional qualitative results achieved by FCGF [8], D3Feat [2], and our SpinNet on the ETH dataset. Note that,
all methods are only trained on the indoor 3DMatch [65] dataset. Red boxes/circles show the failure cases.


