
Appendix A. Proofs
Theorem 1. Suppose pdata is a distribution supported

on a set of disjoint manifolds M1, . . . ,Mk in Rd
, and

[⇡1, . . . ,⇡k] are the probabilities of being from each man-

ifold. Let G✓ be a c-Lipschitz function, and pmodel be the

distribution of G✓(z), where z ⇠ N (0, In), then:

dTV (pdata, pmodel) �
X

|⇡i � pi|� �

where dTV is the total variation distance and:

⇡
⇤
i := min(⇡i, 1� ⇡i)

pi := pmodel(Mi)

� := max
i

{⇡⇤
i � �(��1(⇡⇤

i )� di/c)}

di := inf{||x� y|| | x 2 Mi,y 2 Mj , j 6= i}

di is the distance of manifold Mi from the rest, and � is the

CDF of the univariate standard normal distribution. Note �

is strictly larger than zero iff 9i : di,⇡⇤
i 6= 0.

Proof. We begin by re-stating the definition of Minkowski
sum and proceed by proving the theorem for the case
where the number of manifold is 2. To extend the theorem
form k = 2 to the general case, one only needs to consider
manifold Mi as M1, and

S
j2[1:k]\i Mj as M2.

Definition 1 (Minkowski sum). The Minkowski sum of two

sets U, V 2 Rd
defined as

U + V := {u+ v|u 2 U, v 2 V }

and when V is a d dimensional ball with radius r and

centered at zero, we use the notation Ur to refer to their

Minkowski sum.

If we let U (1) := G
�1
✓ (M1), U (2) := G

�1
✓ (M2), then:

8r1, r2 2 R+, if r1 + r2 < d1/c =) U
(1)
r1 \ U

(2)
r2 = ;

that is because if there exists an x 2 U
(1)
r1 \ U

(2)
r2 , there

would be u1 2 U
(1)

,u2 2 U
(2) such that:

||x� u1|| r1, ||x� u2|| r2 =) ||u1 � u2||< r1 + r2 < d1/c

(9)
However, due to lipsitz condition of G✓:

||G✓(u1)�G✓(u2)||< c||u1 � u2||< c · d1/c = d1

which contradicts with our assumption that the distance be-
tween M1,M2 is d1. Therefore there is no point in the
intersection of U (1)

r1 and U
(2)
r2 . The disjointness of this two

sets provides us:

�n(U
(1)
r1 ) + �n(U

(2)
r2 )  �n(Rn) = 1

where �n(.) of any set is the probability of a random draw of
N (0, In) being from that set. We proceed by using a remark
from theorem 1.3 of [42] which restated below:

Lemma 1. If U is a Borel set in Rn
, then:

p  �n(U) =) �(��1(p) + r)  �n(Ur).

Based on above lemma if we let:

p1 := �n(U
(1)), p2 := �n(U

(2))

then for 8r1, r2 2 R+ such that r1 + r2 < d1/c, we have:

�(��1(p1) + r1) + �(��1(p2) + r2)  1 (10)

We can now calculate the total variational distance of
the marginal distributions of pdata, pmodel on the set
{G✓(U (1)), G✓(U (2)), G✓

�
Rn \ (U (1) [ U

(2))
�
} as:

dTV (p
(marginal)
data , p

(marginal)
model ) = |⇡1 � p1|+|⇡2 � p2|+|1� (p1 + p2)|

(11)
and since total variational distance takes a smaller value on
marginal distributions than the full distribution, we only
need to show that for any i the expression in the equation 11
is larger than g(⇡i, di, c) to prove the theorem 1 for k = 2.
Here g(⇡i, di, c) = ⇡

⇤
i � �(��1(⇡⇤

i )� di/c).

Assume p1  ⇡1, and define �1 := ⇡1 � p1 � 0, based
on equation 10 if r1 = d1/c, r2 = 0, we have:

�(��1(⇡1 ��1) + d1/c) + p2  1

which based on equation 10 implies:

r(�1) := �(��1(⇡1 ��1) + d1/c)� (⇡1 ��1)  DTV

which DTV refers to total variational distance between the
marginal distributions of the data and model. We also know
from the equation 10, that �1  DTV , therefore:

max(r(�1),�1)  DTV

for a �1 2 [0,⇡1]. Therefore

min
�12[0,⇡1]

{max(r(�1), �1)}  DTV

To find the �1 which minimize the above equation, we need
to check endpoints of the interval [0,⇡1], points where the
curve of two functions r(�1), �1 intersects with each other,
and points that are the local minimaum of each of them. It
can be shown the function r(�1) does not have any local
minima when 0 < ⇡1 < 1 because:

r(�1) = P (z 2 [��1(⇡1��1),�
�1(⇡1��1)+d1/c]) (12)

where z is univarite standard normal random variable. There-
fore r(�1) is the probablity of a univarite normal being in a
fixed length interval d1/c, and �1 only changes the starting
point of the interval. By using this fact, it can be easily
shown this function does not have any local optima in the



open interval (0,⇡1). Also the identity function �1 also has
no local optima inside the interval. The endpoints values are:

max(r(0), 0) = �(��1(⇡1) + d1/c)� ⇡1

max(r(⇡1),⇡1) = max(�(��1(0) + d1/c),⇡1) = ⇡1

The function curves of r and identity also intersects only
when:

�(��1(⇡1 � �
⇤
1) + d1/c) = ⇡1

which only happens when:

⇡1 � �(��1(⇡1)� d1/c) = �
⇤
1

where for this point, max(r(�⇤1), �
⇤
1) = �

⇤
1 . Therefore based

on the above calculations:

min

8
<

:�(��1(⇡1) + d1/c)� ⇡1| {z }
I

, ⇡1,

⇡1 � �(��1(⇡1)� d1/c)| {z }
II

9
=

;  DTV

Note, ⇡1 is always smaller than term II, and term I (II) is
equal to probability of a univariate standard normal random
variable being inside the interval [��1(⇡1),��1(⇡1)+d1/c]
([��1(⇡1)� d1/c,��1(⇡1)]). This observation implies that
term II is smaller than term I, if and only if ⇡1  ⇡2. Based
on this fact and symmetry of � with respect to zero, it can
be easily shown that:

g(⇡1, d1, c)  DTV (13)

which proves the theorem. However, we made an assumption
that p1  ⇡1, this does not harm the argument because
otherwise we would have p2  ⇡2, and we can restate all
the above arguments for ⇡2 instead of ⇡1. And, since ⇡2 =
1 � ⇡1 and d1 = d2, therefore we can have g(⇡1, d1, c) =
g(⇡2, d2, c), which proves equation 13.

Theorem 2. Let P =
Pk

i ⇡ipi , Q =
Pk

i ⇡iqi , and

A1, A2, ..., AK be a partitioning of the space, such that the

support of each distribution pi and qi is Ai. Then:

JSD(P k Q) =
X

i

⇡iJSD(pi k qi) (3)

Proof. Based on the definition of the JSD, we have:

JSD(P k Q) =
1

2
KL(P k P +Q

2
) +

1

2
KL(Q k P +Q

2
)

We also have:

KL(P kP +Q

2
) =

Z

Rd

P (x) log
P (x)

P (x) +Q(x)
dx+ log 2 =

X

i

Z

Ai

P (x) log
P (x)

P (x) +Q(x)
dx+ log 2 =

X

i

Z

Ai

⇡ipi(x) log
⇡ipi(x)

⇡ipi(x) + ⇡iqi(x)
dx+ log 2 =

X

i

⇡i(

Z

Ai

pi(x) log
pi(x)

pi(x) + qi(x)
dx+ log 2) =

X

i

⇡iKL(pi k
pi + qi

2
).

Therefore:

KL(P k P +Q

2
) =

X

i

⇡iKL(pi k
pi + qi

2
),

and similarly:

KL(Q k P +Q

2
) =

X

i

⇡iKL(qi k
pi + qi

2
)

Adding these two terms completes the proof.

Theorem 3. Let �(x) : Rd ! Rd
be a C

1
(differentiable

with continuous derivative) function, W
partitioner 2 Rk⇥d

,

and Ri as defined in Eq 6. If there exists c0 > 0, such that:

8x,y 2 Rd
, c0||x� y|| ||�(x)� �(y)||,

then for every i 2 [1 : k], every local optima of Ri is a

global optima, and there exists a positive constant b0 > 0
such that:

8x 2 Rd \Ai, b0  ||rRi(x)||

where Ai = {x|x 2 Rd
, Ri(x) = 0}. Furthermore Ai is a

connected set for all i’s.

Proof. We start by proving that the Jacobian matrix of func-
tion � is invertible for any x 2 Rd. Since � 2 C

1, based on
Taylor’s expansion theorem for multi-variable vector-valued
function �, we can write:

�(y)� �(x) = J�(x) (y � x) + o (||y � x||)

Were o(·) is the Little-o notation. By taking norm from both
sides and using triangle inequality, we have:

||�(y)� �(x)|| ||J�(x) (y � x) ||+||o (||y � x||) ||

Also because:

c0||y � x|| ||�(y)� �(x)||



=) c0||y � x|| ||J�(x) (y � x) ||+||o (||y � x||) ||
(14)

thus for any fixed x: 9 ✏ > 0 such that 8y 2 Rd where
||y � x|| ✏ then:

||o (||y � x||) || c0

2
||y � x||

which combined with the inequality 14, results in:

c0

2
||y � x|| ||J�(x) (y � x) ||

For y 6= x, let u := (y � x)/||y � x||, then by dividing
both sides of the above inequality to ||y � x|| we have:

8u 2 Rd
, ||u||= 1 =) c0

2
 ||J�(x)u||

which shows the Jacobian matrix of � is invertiable for any
x and all of its singular values are larger than c0/2. If there
is no x 2 Rd \Ai the proof is complete. Otherwise, consider
any x 2 Rd \Ai, for this x we have:

0 < Ri(x) =
X

c

(fc(x)�fi(x))+ =
X

c

((wc�wi)�(x))+

where wj is the j’th row of the matrix W partitioner. Let:

I(x) := {c|fc(x) > fi(x), c 2 [1 : k]}

which is an non-empty set, because 0 < Ri(x) and we have

0 < Ri(x) =

2

4
X

c2I(x)

(wc �wi)

3

5�(x)

=) v :=
X

c2I(x)

(wc �wi) 6= 0

Taking the gradient of the new formulation of Ri, we have:

rRi(x) =

2

4
X

c2I(x)

(wc �wi)

3

5r(�(x)) = vJ�(x)

but since we showed earlier that all of the singular values of
the Jacobian matrix is larger than c0/2, the Jacobian matrix
is d⇥ d, and v is not equal to zero, it can be easily shown:

||rRi(x)||> ||v||c0
2

:= b0

Now, we also need to show Ai is connected for any i

to complete the proof. To that end, we first show � is a
surjective function, which means its image is Rd. To show
the � is surjective, we prove its image is both an open and
closed set, then since the only sets which are both open and
closed (in Rd) are Rd

, ;, we can conclude the surejective

property. The image of � is an open set due to Inverse
Function Theorem [62] for �. We are allowed to use Inverse
Function Theorem, since � satisfies both C

1 condition and
non zero determinant for all the points in the domain. We
will also show that the image of � is a closed set by showing
it contains all of its limit points. Let y be a limit point in
the image of �, that is there exists {x1,x2, · · ·} such that
�(xr) ! y. Since Rd is complete and we have c0||xr �
xs|| ||�(xr) � �(xs)||, then {x1,x2, · · ·} is a Cauchy
sequence. Finally since � is a continues function �(x⇤) = y,
completing the proof.

The function � is also an invertible function because if
�(x) = �(y) then

c0||x� y|| ||�(x)� �(y)||= 0

which implies x = y. Therefore � is in fact a continuous
bijecitve function, which means it has a continuous inverse
defined on all the space Rd. Furthermore, it can be easily
shown Ri for a datapoint is zero iff its transformation by �

lies in a polytope (where each of its facets is a hyperplance
perpendicular to a wc � wi). Since convex polytope is a
connected set, and by applying �

�1 (it is well defined ev-
erywhere because of bijective property of �) to it, we would
have a connected set. That is because a continuous function
does not change the connectivity and �

�1 is continuous.



Appendix B. Additional qualitative results
We present more samples of our method showing both

the partitioner and generative model’s performance. Figure 6
and Figure 7 visualize the sample diversity and quality of
our method on CIFAR-10 and STL-10.

B.1. CIFAR-10

Real Generated

(a) Partition 1

Real Generated

(b) Partition 3

Real Generated

(c) Partition 12

Real Generated

(d) Partition 13

Real Generated

(e) Partition 28

Real Generated

(f) Partition 37

Real Generated

(g) Partition 42

Real Generated

(h) Partition 50

Real Generated

(i) Partition 54

Real Generated

(j) Partition 82

Real Generated

(k) Partition 86

Real Generated

(l) Partition 94

Figure 6: Extra examples of unsupervised partitioning and their corresponding real/generated samples on CIFAR-10 dataset.



B.2. STL-10

Real Generated

(a) Partition 47

Real Generated

(b) Partition 49

Real Generated

(c) Partition 75

Real Generated

(d) Partition 91

Real Generated

(e) Partition 100

Real Generated

(f) Partition 113

Real Generated

(g) Partition 177

Real Generated

(h) Partition 189

Figure 7: Extra examples of unsupervised partitioning and their corresponding real/generated samples on STL-10 dataset.



Appendix C. Implementation details
We use two RTX 2080 Ti GPUs for experiments on STL-

10, eight V-100 GPUs for ImageNet and a single GPU for
all other experiments.

Space partitioner. For all experiments we use the
same architecture for our space partitioner S. We use pre-
activation Residual-Nets with 20 convolutional bottleneck
blocks with 3 convolution layers each and kernel sizes of
3 ⇥ 3, 1 ⇥ 1, 3 ⇥ 3 respectively and the ELU [11] nonlin-
earity. The network has 4 down-sampling stages, every 4
blocks where a dimension squeezing operation is used to
decrease the spatial resolution. We use 160 channels for all
the blocks. We do not use any initial padding due to our
theoretical requirements. The negative slope of LeakyReLU
is set as 0.2. In fact we can use a soft version of LeakyReLU
if it is critical to guarantee the C

1 constraint of �. We train
our pretext network for 500 epochs with momentum SGD
and a weight decay of 3e-5, learning rate of 0.4 with cosine
scheduling, momentum of 0.9, and batch size of 400 for
CIFAR-10 and 200 for STL-10. The final space partitioner
is trained for 100 epochs using Adam [38] with a learning
rate of 1e-4 and batch size of 128. The weights in equation 5
are set to ↵ = 5 and � = 1e-3.

Generative model. Following SN-GANs [55] for image
generation at resolution 32 or 48, we use the architectures
described in Tables 6 and 7. Generators/discriminators are
different from each other in first-layer/last-layer by having
different partition ID embeddings, (which in fact acts as the
condition). We use Adam optimizer with a batch size of 100.
For the coefficient of guide � we utilized linear annealing
during training, decreasing form 6.0 to 0.0001. Both G’s and
D networks are initialized with a normal N (0, 0.02I). For
all GAN’s experiments, we use Adam optimizer [38] with
�1 = 0, �2 = 0.999 and a constant learning rate 2 for both
G and D. The number of D steps per G step training is 4.

For ImageNet experiment, we adopt the full version of
BigGAN model architecture [5] described in Table 8. In this
experiment, we apply the shared class embedding for each
CBN layer in G, and feed noise z to multiple layers of G
by concatenating with the partition ID embedding vector.
Moreover, we add Self-Attention layer with the resolution
of 64, and we employ orthogonal initialization for network
parameters [66]. We use batch size of 256 and set the number
of gradient accumulations to 8.

Evaluation. It has been shown that [10, 48] when the
sample size is not large enough, both FID and IS are biased,
therefor we use N=50,000 samples for computing both IS
and FID metrics. We also use the official TensorFlow scripts
for computing FID.

C.1. Additional Experiments:
Our quantitative results on the (2D-ring, 2D-grid) toy

datasets [45] are: recovered modes: (8 , 25), high quality

samples: (99.8 , 99.8), reverse KL: (0.0006, 0.0034).
Given the strong performances of recent models (and

ours) on these datasets we suffice to these stats. For vi-
sualizations of our generated samples related to these two
datasets please see Figure 4-left and refer to the appendix
of [46] for other methods.

Additional architecture dependent experiment: Since
SelfCondGAN [46] uses certain features from the discrimi-
nator, it is not trivial to adopt to other architectures. Thus,
we trained PGMGAN with the same G/D architecture on
CIFAR10 yielding an FID of 10.65.

Partitioning method One way to assess the quality of
the space partitioner is by measuring its performance on
placing semantically similar images in the same partition.
To that end, we use the well-accepted clustering metric Nor-
malized Mutual Information (NMI). NMI is a normalization
of the Mutual Information (MI) between the true and in-
ferred labels. This metric is invariant to permutation of the
class/partition labels and is always between 0 and 1, with
a higher value suggesting a higher quality of partitioning.
Table 5 compares the clustering performance of our method
to the-stat-of-the-art partition-based GAN method Liu et.
[46], which clearly shows superiority of our method.

Table 5: Comparison of the clustering performance in term of
Normalized Mutual Information (NMI), higher is better.

Stacked MNIST CIFAR-10 STL-10 ImageNet

Self-Cond-GAN [46] 0.3018 0.3326 - 17.39
PGMGAN 0.4805 0.4146 0.3911 68.57



Table 6: GANs architecture for 32⇥ 32 images.

z 2 R128 ⇠ N (0, I)
Embed(PartitionID) 2 R128

dense, 4⇥ 4⇥ 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3⇥ 3 Conv, 3 Tanh

(a) Generator

RGB image x 2 R32⇥32⇥3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU, Global sum pooling

Embed(PartitionID)·h + (linear ! 1)

(b) Discriminator

Table 7: GANs architecture for 48⇥ 48 images.

z 2 R128 ⇠ N (0, I)
Embed(PartitionID) 2 R128

dense, 3⇥ 3⇥ 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3⇥ 3 Conv, 3 Tanh

(a) Generator

RGB image x 2 R48⇥48⇥3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 1024

ReLU, Global sum pooling

Embed(PartitionID)·h + (linear ! 1)

(b) Discriminator

Table 8: GANs architecture for 128⇥128 images. “ch” represents
the channel width multiplier and is set to 96.

z 2 R120 ⇠ N (0, I)
Embed(PartitionID) 2 R128

Linear (20 + 128) ! 4⇥ 4⇥ 16ch

ResBlock up 16ch ! 16ch

ResBlock up 16ch ! 8ch

ResBlock up 8ch ! 4ch

ResBlock up 4ch ! 2ch

Non-Local Block (64⇥ 64)

ResBlock up 2ch ! ch

BN, ReLU, 3⇥ 3 Conv ch ! 3

Tanh

(a) Generator

RGB image x 2 R128⇥128⇥3

ResBlock down ch ! 2ch

Non-Local Block (64⇥ 64)

ResBlock down 2ch ! 4ch

ResBlock down 4ch ! 8ch

ResBlock down 8ch ! 16ch

ResBlock down 16ch ! 16ch

ResBlock 16ch ! 16ch

ReLU, Global sum pooling

Embed(PartitionID)·h + (linear ! 1)

(b) Discriminator



C.2. ImageNet

(a) Partition 034 (b) Partition 159

(c) Partition 455 (d) Partition 642

Figure 8: Examples of generated samples on unsupervised ImageNet 128⇥128 dataset.


