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Abstract

Adversarial robustness corresponds to the susceptibil-
ity of deep neural networks to imperceptible perturbations
made at test time. In the context of image tasks, many algo-
rithms have been proposed to make neural networks robust
to adversarial perturbations made to the input pixels. These
perturbations are typically measured in an `p norm. How-
ever, robustness often holds only for the specific attack used
for training. In this work we extend the above setting to con-
sider the problem of training of deep neural networks that
can be made simultaneously robust to perturbations applied
in multiple natural representations spaces. For the case of
image data, examples include the standard pixel represen-
tation as well as the representation in the discrete cosine
transform (DCT) basis. We design a theoretically sound
algorithm with formal guarantees for the above problem.
Furthermore, our guarantees also hold when the goal is to
require robustness with respect to multiple `p norm based
attacks. We then derive an efficient practical implementa-
tion and demonstrate the effectiveness of our approach on
standard datasets for image classification.1

1. Introduction
In recent years deep learning has enjoyed tremendous

success in solving a variety of machine learning tasks, even
achieving or surpassing human level performance in certain
cases [14, 15]. At the same time important vulnerabilities in
these systems have also been discovered. One such example
is their susceptibility to imperceptible perturbations made to
the input at test time [24]. This has led to the new paradigm
of adversarial machine learning, i.e., making deep neural
networks robust to test time perturbations. There has been
a flurry of recent works in this area with several proposed
defenses [18, 29, 6, 17] and methods to attack and evalu-
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neural-structured-learning/tree/master/research/
multi_representation_adversary.

ate these defenses [5, 3, 26]. When studying the design of
networks robust to adversarial attacks several aspects need
to be considered such as a) what perturbations can the ad-
versary apply to the input, and b) what information does
the adversary have about the neural network? One widely-
studied setting in the current literature is white box attacks
under `p norm perturbations [10, 18]. Here the adversary
has complete knowledge of the neural network and its pa-
rameters, and given an input x it can perturb it to x′ such
that ‖x− x′‖p ≤ ε for some p ≥ 1 specified apriori. In the
context of image data this corresponds to applying perturba-
tions to the input pixels. Current approaches for defending
against such attacks are based on studying variants of the
following robust objective:

min
θ

E(x,y)∼D
[

max
x′:‖x−x′‖p≤ε

L(fθ(x
′), y)

]
. (1)

Here (x, y) is an example and label pair drawn from the
data distribution, f is a neural network parameterized by
weights θ and L is a standard loss function such as the cross
entropy loss. As an example the popular projected gradient
descent (PGD) method [18] proposes to optimize the above
objective by alternately maximizing the inner objective via
gradient ascent and then performing the outer minimization
via gradient descent. The recent work of [22] combines the
above objective with Gaussian smoothing to achieve cer-
tified robustness guarantees, and another popular method
namely the TRADES algorithm [29] adds a regularization
term requiring the predictions of the network at x and x′ to
be close to each other.

In this work we aim to address two main limitations of
current approaches to adversarial machine learning. The
first concerns the choice of the representation in which the
adversary applies the perturbations. Using images as an ex-
ample, current approaches model the adversary as making
small magnitude changes in the pixel representation of the
image. However, given that the adversary has full access
to the input x, apriori there is no reason to restrict the per-
turbations to only the pixel representations. Real data such
as images have many other natural representations, such as
the discrete cosine transform (DCT) basis for images. One



could envision an adversary making changes to the input
image in the DCT basis that are still imperceptible but don’t
satisfy the small `p norm property in the pixel basis. Empir-
ical attacks based on this have been shown to be successful
in recent works [4]. Hence it is important to consider adver-
sarial robustness in other representations for a model to be
truly robust. Secondly, current approaches fix a represen-
tation and the perturbation model, and design an algorithm
to achieve robustness for that specific setting. In general
such networks do not turn out to be robust to other types of
attacks. For example a network trained to be robust to `∞
norm perturbations in the pixel representation may not be
robust to `1 norm perturbations.

Ideally, one would like to train networks that can be si-
multaneously robust to multiple attack models in multiple
representation spaces. At the same time it is desirable to
have a scalable solution with training cost not that much
more than standard adversarial training in a fixed attack
model. This is precisely the problem that we solve in this
work. Our main contributions are listed below.

• We propose and motivate the problem of studying ro-
bustness to adversarial perturbations in multiple repre-
sentation spaces and under multiple attack models.

• We propose a min-max formulation of the above sce-
nario and use ideas from the theory of online learn-
ing, in particular the multiplicative weights update
method [13] to design an algorithm for our formula-
tion and provide theoretical guarantees to justify our
approach.

• We extend our theoretically principled algorithm to de-
sign a practical implementation that can scale to mul-
tiple representation spaces and multiple attack models
with training cost not significantly more than that of
standard adversarial training for a fixed attack model
and representation space. We demonstrate the effec-
tiveness of our algorithm for image classification tasks
on the MNIST [16] and the CIFAR-10 [14] datasets.

2. Related Work
There is a vast amount of literature on defenses and at-

tacks for adversarial robustness. See [26] for a survey. Here
we discuss the works most relevant to the results of the pa-
per. As mentioned in the introduction most existing de-
fenses for adversarial robustness design customized solu-
tion for a fixed attack model (`p norm) and representation
space (pixel basis). These methods are aimed at approxi-
mately solving the robust optimization objective in (1). The
FGSM method [10] solves the inner maximization prob-
lem via one step of a gradient ascent whereas the PGD
method [18] performs multiple iterations of gradient ascent
to better optimize the inner objective. Typically this scales

the cost of training linearly with the number of iterations
used in the inner maximization. There have been recent
works aimed at achieving the same performance as the PGD
method but with faster training time [23, 27].

The above approaches provide robustness to first order
attacks that are of the same type that are used in training.
There has also been a lot of recent work on provably certi-
fying the robustness of neural networks via approaches such
as interval bound propagation [11], semi-definite program-
ming [20], and randomized smoothing [6, 17].

Relatively little work exists on studying robustness to
multiple types of attacks simultaneously and in multiple
representation spaces. The recent work of [25] studies train-
ing classifiers that are simultaneously robust to perturba-
tions to the input pixels of different `p norms. However
they do not consider multiple representation spaces. Fur-
thermore, their approach does not come with theoretical
guarantees and scales linearly with the number of perturba-
tions considered. In contrast our algorithm comes with the-
oretical guarantees and has a training cost that is not much
more than that of adversarial training for a fixed attack. The
recent work of [4] motivates the problem of studying cer-
tified robustness in other representations such as the DCT
basis. However they do not consider training classifiers that
are simultaneously robust to multiple attack models.

3. Adversarial Robustness in Multiple Repre-
sentations

In this section we motivate the need for studying adver-
sarial robustness in representations other than the one that is
input to the network. Real world data can be represented in
many natural representations, each with their own appeal-
ing properties. For instance, in the context of images, the
DCT basis is a popular choice and it is well known that sig-
nals when represented in this basis are sparse. This has been
exploited in recent works [4] to achieve better robustness to
`∞ perturbations in this representations.

In the context of adversarial learning a fundamental
question to ask is: what constitutes an imperceptible per-
turbation? Is it enough for an adversarially perturbed ex-
ample to have a small `p norm in the pixel representation?
As one can imagine, this is not a sufficient condition for
imperceptibility. Many works have notice that images and
their adversarial perturbations made in the pixel basis have
distinct spectral signatures when viewed in other bases such
as the discrete cosine transform (DCT). This has led to the
proposal of many learning systems for detecting pixel based
adversarial attacks using properties of images in other rep-
resentations [2, 28, 9]. In particular, the work of [19] shows
that one can achieve high accuracy in detecting adversarial
perturbations made in the pixel representation by training
a binary classifier to separate real and perturbed images.
Hence an adversary has to naturally think about attacking



Figure 1. The figure shows examples of images from the CIFAR-10 dataset with their adversarially perturbed counterparts computed by
launching a PGD based attack in the DCT basis. The perturbed images, although imperceptible, are far from the original images in the
pixel basis in `∞ norm.

the model in multiple representations simultaneously in or-
der to fool such systems.

Additionally, working in multiple representation spaces
can help an adversary craft stronger attacks. As an exam-
ple, the recent work of [4] provides examples where one
can generate imperceptible examples by perturbing the im-
age in the DCT basis and at the same time the perturbed ex-
amples are far way from the original image in the original
pixel basis. Such an attack can fool classifiers that are only
trained for defending against small norm `p attacks in the
pixel representation. We further illustrate this in Figure 1.
The figure shows examples of images from the CIFAR-10
dataset and corresponding adversarial perturbations com-
puted by launching a PGD based adversarial attack in the
DCT basis. For the case of CIFAR-10 it is generally ac-
cepted that `∞ perturbations in the pixel basis upto a mag-
nitude of ε = 0.03 constitute imperceptible perturbations.
However, the adversarial images obtained in the Figure via
working in the DCT basis, while being imperceptible, have
much higher `∞ distance from the true images in the pixel
representation.

From the above discussion we conclude that it is an im-
portant problem to design classifiers that are simultaneously
robust against adversarial attacks in multiple representation
spaces. Unfortunately, simply performing standard adver-
sarial training in a fixed space is not enough in order to
achieve this goal. As an example in Table 1 we show the
performance of two neural networks, one trained adversar-

ially in the pixel representation and the other in the DCT
representation. As can be seen the trained networks have
very poor robustness against the attacks that were not con-
sidered during training.

Test w/pixel
`∞

Test w/DCT
`∞

Nat. Acc.

Train
w/pixel `∞

44.02
±1.02

27.30
±1.44

80.24
±0.40

Train
w/DCT `∞

11.80
±0.68

51.92
±0.43

74.92
±0.61

Table 1. The rows of the table correspond to two classifiers that
have been adversarially trained via the PGD method for `∞ ro-
bustness either in the pixel basis or the DCT basis. The first two
columns show the adversarial accuracies achieved by the classi-
fiers against `∞ attacks in the pixel and the DCT basis. The last
column displays the natural accuracy. As can be seen no classifier
is simultaneously robust to both types of attacks.

As a result of the above observations what is needed is
a general algorithmic approach for such scenarios. We next
formulate and present such an approach.

4. Formulation and Algorithms

We next formulate the above scenario and design a near
optimal algorithm for simultaneously achieving robustness
across multiple representation spaces. We fix a canonical
representation (say the pixel basis) and denote x ∈ Rd as
examples and y being the label. We assume that the ex-



ample and label pairs (x, y) are drawn from an unknown
joint distribution D. We then consider a given set of k
representation spaces with corresponding maps being given
by R1,R2, . . . ,Rk. Hence, given an example x ∈ Rd
its representation in space i is given by Ri(x) ∈ Rdi . It
would be instructive to think of Ri as the DCT basis al-
though in general these maps could be non-linear. The
only assumption we require is that the maps be surjective,
i.e. R−1

i exists. We will overload notation and denote by
Ri both the ith representation and the map correspond-
ing to it. For each Ri and any x ∈ Rd, we denote by
Bi(x) the set of allowed perturbations to x in the represen-
tation space Ri. For example if we are modeling an `∞
attack of radius ε in the representation Ri then we have
Bi(x) = {z ∈ Rdi : ‖Ri(x) − z‖∞ ≤ ε}. In this work
we will be able to deal with very general perturbation sets.
Given a fixed representation spaceRi, the problem of learn-
ing a robust classifier specific to Ri can be written as that
of minimizing:

min
θ
Li(θ) = E(x,y)∼D

[
max

z∈Bi(x)
L(fθ(R−1

i (z)), y)
]
. (2)

Then given k representation spacesR1, . . . ,Rk our goal
is to solve the following:

min
θ

max
i
Li(θ). (3)

The above min-max formulation lends itself naturally
to techniques from online learning. In particular, consider
a two player game with the row player as the one that
chooses the network parameter θ and the column player as
the one that chooses the loss functions Li with the payoff
for the column player being Li(θ). From the minimax the-
orem [13] for two player games, we know that if for every
distribution over the k columns there exists a good solu-
tion θ, then there exists a distribution over solutions that
is simultaneously good for all the columns, i.e., the k loss
functions. This immediately provides a way to solve the
min-max formulation via solving a simple cost sensitive ad-
versarial optimization problem. Such techniques have been
widely used in the literature to solve a variety of constrained
problems in machine learning [1, 8]. Here we demonstrate
their applicability for adversarial robustness. There has also
been recent work on algorithms for solving optimization of
the form minθ maxλ∈Λ

∑
i λiLi(θ) [7] for Λ being a con-

vex set and functions Li being convex in θ. Our loss func-
tions are non-convex in θ and hence we need access to a
cost sensitive optimization oracle to provide overall guar-
antees for our formulation. We next define the adversarial
cost sensitive optimization problem.

Definition 4.1. Given weights w1, w2, . . . , wk with wi ≥
0 and non-negative losses L1, L2, . . . , Lk the adversarial

cost sensitive optimization corresponds to finding an ap-
proximately optimal solution θ̂ such that

k∑
i=1

wiLi(θ̂) ≤ min
θ

k∑
i=1

wiLi(θ) + δ. (4)

Here δ quantifies the additive error in approximating the
cost sensitive objective.

We will show how to convert an algorithm for solving
the adversarial cost sensitive optimization problem above
to provably optimize (3). The algorithm is based on the
popular multiplicative weights update method [13] and is
described in Figure 2. For the proposed algorithm we show
the following guarantee

Theorem 4.2. For a given set of non-negative losses
bounded in [0, R], if the adversarial cost sensitive optimiza-
tion in (4) can be solved to additive error δ for any setting of
non-negative weights then the algorithm in Figure 2 when
run with η = O(ε/R) and T = O(R

2 log k
ε2 ) outputs a uni-

form distribution P over solutions θ1, θ2, . . . , θT such that

max
i

Eθ∼PLi(θ) ≤ min
θ

max
i
Li(θ) + ε+ δ. (5)

Furthermore if the loss function L in (2) is convex in its first
argument, such as the cross-entropy loss, squared loss and
hinge loss to name a few, then the average hypothesis fθ̂
satisfies

max
i
Li(fθ̂) ≤ min

θ
max
i
Li(θ) + ε+ δ. (6)

Here Li(fθ̂) refers to the loss incurred by the ensembled
hypothesis as output by the algorithm in Figure 2.

The proof can be found in Appendix 8 in the supplemen-
tary material.

5. A Practical Implementation
While the algorithm in Figure 2 and the associated guar-

antee in Theorem 4.2 provide a principled way to approach
the optimization in (3), we need to make a number of mod-
ifications to the core algorithm in order to obtain a practi-
cal and scalable implementation. In particular, we do not
want the cost of training the robust classifiers to scale lin-
early with k the number of representation spaces. We first
discuss solving the adversarial cost sensitive optimization
in (4). In practice, each Li(θ) itself represents a hard op-
timization problem (of the form (2)). Luckily, there exists
first order algorithms such as the PGD method [18] to op-
timize each Li separately that work well in practice. We
now show how to combine them to solve (4). We follow
the methodology of stochastic optimization and proceed in
epochs. In each epoch, we sample a mini batch of B data



Input: Training data {(x1, y1), . . . , (xm, ym)}, Scaling factor η.

1. Initialize wi = 1 for all i ∈ [k].

2. For t = 1 . . . , T do:

• Compute θt by approximately optimizing (4) with normalized
weights wi∑k

j=1 wj
as inputs.

• For all i set wi = wi · eηLi(θt).

3. Output fθ̂ = 1
T

∑T
t=1 fθt .

Figure 2. An algorithm achieving robustness simultaneously across representation spaces.

Input: Training data {(x1, y1), . . . , (xm, ym)}, Validation data {(xm+1, ym+1), . . . , (xm+s, ym+s)}, mini batch size B,
time steps T , update frequency r, window size h, Scaling factor η.

1. Initialize wi = 1 for all i ∈ [k].

2. For t = 1 . . . , T do:

• Repeat for r epochs:

– Get the next mini batch of size B. Sample loss Li with probability pi = wi∑k
j=1 wj

.

– Run the PGD based algorithm to optimize Li on the mini batch.

• For all i set wi = wi · eηL
val
i (θt). Here Lval is the loss evaluated on the validation set.

3. Output θ̂ = 1
h

∑T
t=T−h+1 θt.

Figure 3. A scalable variant of the algorithm in Figure 2.

points, sample a loss Li with probability proportional to its
current wi and then run the corresponding PGD based algo-
rithm for optimizing Li on the current mini batch. After a
few epochs of optimization we update the weights wi of the
losses as described in the algorithm in Figure 2. In order to
evaluate the losses for the weight update we use a separate
validation set. This significantly reduces the variance in our
estimates.

Next we consider approximating the output fθ̂. Notice
that the guarantee of Theorem 4.2 applies to an ensemble of
T neural networks provided by parameters θ1, θ2, . . . , θT .
Maintaining this ensemble requires a high storage cost and
makes the final output model impractically big. We first no-
tice that if the losses Li were convex, then the guarantee of
Theorem 4.2 will also hold for the average parameter, i.e.,
θ̂ = 1

T

∑
t θt. To get a practical implementation we make

a near convexity assumption on the losses and simply take
the average of the model weights. Furthermore, in our ex-
periments we observe that taking the average of the last few
model parameters performs better than the uniform average
of all the model weights. Fixing these choices leads to a
scalable variant as shown in Figure 3.

6. Experimental Evaluation
We next demonstrate the effectiveness of our approach

on the task of learning a classifier for image classification
that is simultaneously robust to adversarial attacks in multi-
ple representations spaces.

Datasets. We perform the experimental evaluation on two
public datasets namely the MNIST dataset [16] and the
CIFAR-10 dataset [14]. The MNIST dataset consists of
60, 000 training images with each being a 28×28×1 tensor.
The CIFAR-10 dataset consists of 50, 000 training images
each of dimensionality 32× 32× 3. Both the datasets con-
sist of 10, 000 test images and correspond to a multi class
classification problem with 10 class labels. In each case we
reserve 10% of the training data to be used as the valida-
tion set in the Algorithm from Figure 3. This validation set
will be used to evaluate the loss Lval in the algorithms. In
the Appendix we also include experiments on the Tiny Im-
ageNet dataset [21].
Representation Spaces and Attack Models. To demon-
strate the scalability of our approach we consider two dif-



ferent representation spaces namely the pixel basis and the
DCT basis. In each representation space we consider three
types of `p norm based attacks for p = 1, 2,∞. Hence, in
total we have 6 loss functions Li to optimize as in (3). All
our experiments are conducted on a ResNet-50 deep neural
network that is a popular architecture for training on image
classification tasks [12]. To compute adversarial examples
in the pixel basis for norm bounded `∞ and `2 perturbations
we use the standard PGD based attack as proposed in [18].
For computing a norm bounded `1 perturbation we use the
sparse ascent algorithm namely the SLIDE method as pro-
posed in [25]. To compute an adversarial attack in the DCT
basis we append the ResNet-50 architecture with a linear
DCT transformation follows by an inverse DCT transfor-
mation as shown in Figure 4. Notice that both the DCT and
the Inverse DCT are fixed linear layers and in the absence
of any perturbations the output of the network in Figure 4 is
exactly the same as the original ResNet-50 network.

Using the modified architecture we first compute the
DCT representation of the image and then launch an adver-
sarial perturbation in the DCT basis using either the PGD
method (for `2, `∞ attacks) or the SLIDE method (for `1 at-
tacks). In this way we get the perturbed image after taking
the inverse DCT transform of the perturbed example x′ as
shown in Figure 1. After computing the adversarial pertur-
bation and passing it through the inverse DCT transform we
clip the pixel values in [0, 1] to make the example a valid
input for the ResNet-50 network. We pick pixel and DCT
spaces as examples to demonstrate the effectiveness of our
algorithm. Our approach is general and can be applied to
other natural spaces. In the appendix we also include exper-
iments with other perturbations/spaces such as rotations.

Figure 4. The modified network architecture for computing an ad-
versarial perturbation in the DCT basis.

Baselines. We next describe the baselines that we use
when comparing our proposed approach. The problem of

being simultaneously robust to multiple adversarial attacks
has been largely ignored in the literature so far. The recent
work of [25] studies being robust in pixel basis to different
`p norm based attacks. However the proposed method is not
scalable to a large number of attacks.

We instead compare our proposed algorithm with follow-
ing two baseline heuristics. We choose these heuristics due
to their simplicity and more importantly due to their scal-
ability. Furthermore, the reader should also compare our
results to those in Table 1 that shows the results of training
a state-of-the-art model trained using the PGD [18] method
for a single representation space.
Round Robin. The round robin heuristic sketched in Fig-
ure 5 follows the same outline as the algorithm in Figure 3
except that instead of maintaining and updating weights, it
simply picks the loss function Li to apply to a mini batch in
a fixed order. It is easy to see that this method scales very
well.

Input: Training data {(x1, y1), . . . , (xm, ym)}.
Input: Mini batch size B, time steps T .

1. Initialize index = 1.

2. For t = 1 . . . , T do:

• Get the next mini batch of size B.

• Set i = index.

• Use PGD to optimize Li on the mini
batch to get θt.

• index = (index+ 1) mod k + 1.

3. Output θ̂ = θT .

Figure 5. The round robin heuristic.

Greedy. The greedy heuristic also follows the same outline
as the algorithm in Figure 3. However, for each time step it
chooses the loss with the worst error (on the validation set)
to apply next. See Figure 6.
Hyperparameter Configurations. Next we discuss the
hyperparameters we use when computing the adversarial
perturbations for the different `p norm based attacks. When
running our proposed algorithm in Figure 3 and the greedy
heuristic, we set T = 40, r = 5 for CIFAR-10 (200 epochs
total), and T = 20, r = 3 for MNIST (60 epochs total).
We train the round robin heuristic for the same number of
epochs.

For the case of `∞ and `2 attacks, during training we use
10 steps of gradient ascent to optimize the inner maximiza-
tion in (2). During evaluation we again run the PGD based
attack on our model across all the representation spaces and
use 40 steps of the PGD method to solve the inner maxi-



Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)
Pixel (`∞) 36.03± 6.69 29.99± 1.49 35.70± 6.36 39.13± 1.74

Pixel (`2) 69.03± 1.58 71.92± 0.36 69.51± 2.21 71.27± 0.22

Pixel (`1) 45.84± 2.85 53.45± 0.70 44.22± 4.79 46.90± 1.46

DCT (`∞) 44.72± 8.60 45.63± 1.75 39.44± 6.76 42.27± 2.77

DCT (`2) 68.99± 1.58 72.01± 0.28 69.66± 2.21 71.24± 0.12

DCT (`1) 37.51± 6.78 41.44± 0.82 39.62± 5.71 42.96± 1.12

Min. Accuracy 34.62± 5.60 29.99± 1.49 35.70± 6.36 39.13± 1.74

Union Attack 31.95± 4.55 29.70± 1.42 33.17± 5.95 36.18± 1.89

Nat. Acc. 78.56± 1.46 81.80± 0.38 79.64± 0.51 80.66± 0.89
Table 2. Comparison of the adversarial accuracies achieved on the CIFAR-10 dataset.

Input: Training data {(x1, y1), . . . , (xm, ym)}.
Input: Validation data:
{(xm+1, ym+1), . . . , (xm+s, ym+s)}.
Input: Mini batch size B, time steps T , update
frequency r.

1. For t = 1 . . . , T do:

• Set i = arg maxj L
val
j .

• Repeat for r epochs:

– Get the next mini batch of size B.
– Use PGD to optimize Li on the

mini batch to get θt.

2. Output θ̂ = θT .

Figure 6. The greedy heuristic.

mization in (1). For the case of `1 attacks we use 20 it-
erations of the SLIDE method during training to compute
adversarial perturbations and 100 iterations of the method
during evaluation. We experiment with both running the
PGD method with 20 random restarts, and a simpler attack
with no restarts. The experiments we report here are for the
latter case. The qualitative conclusions of our experiments
remain the same when using 20 random restarts. See the
supplementary material for details.

For the MNIST dataset we use perturbation magnitudes
of 0.4, 1 and 5 for `∞, `2 and `1 norm based attacks re-
spectively. The corresponding magnitudes for the CIFAR-
10 dataset are 0.06, 0.1 and 7.84. We keep the perturbation
magnitudes the same across both the pixel and the DCT ba-
sis. In our experiments when performing gradient ascent
for ` steps to compute a perturbation, we use a step size of
2.5 ε` , where ε is the perturbation magnitude.

Metrics. For each of our trained classifiers we report the
adversarial accuracy for each of the 6 individual attacks
launched separately on the trained model. In addition we
also report the worst adversarial accuracy among the 6 at-

tacks on the same model. Notice that this is the metric that
our proposed algorithm in Figure 3 aims to optimize. Fi-
nally, we also report the accuracy of our trained models on
a union attack, i.e., for each example we produce all 6 ad-
versarial perturbations and consider the attack successful if
any one of them succeeds in making the prediction of the
model incorrect. Finally, notice that our proposed algorithm
in Figure 3 has a parameter h namely the window size. We
report results for h = 1 and h = 3. These correspond to
either using the parameters of the last time step or using the
model averaged over the last three time steps.
Results. We compare our algorithm to the baseline as
shown in Table 2 for the CIFAR-10 dataset and in Table 4
for the MNIST dataset. In both the cases the performance
of the multiplicative weights update based algorithm is sig-
nificantly better than the baseline on the minimum accuracy
metric and the union attack metric. This difference is signif-
icantly higher for the MNIST dataset where both the greedy
and the round robin heuristics are unstable and have much
higher variances. The round robin heuristic switches among
different losses much more often and pays unnecessary at-
tention to the adversaries which it already covers well. The
greedy heuristic, on the other hand, switches less frequent
than our proposed algorithm. But greedy fails to address
the runner-up adversary which may be almost as difficult
as the chosen one, causing instability. We also notice that
using the average of the last three model parameters in the
multiplicative weights method is slightly better than simply
using the parameters of the last time step.
Comparison of Training Times. We next demonstrate
the scalability of our proposed algorithm. Table 3 shows the
training time of our method, measured in wall clock time,
as compared to the baselines when optimizing over all 6
loss functions. Moreover, the first two columns represent
the training times for optimizing a single loss function (`∞
attack) in either the pixel or the DCT basis. As can be seen
our the training cost of our approach scales sublinearly with
the number of representation spaces.
On the Convexity Assumption. Recall that the guaran-
tees of Theorem 4.2 apply to the algorithm in Figure 2 that
requires one to produce a hypothesis that is an ensemble of



Dataset Pixel (`∞) DCT (`∞) Round Robin Greedy Mult. Weights
MNIST 2.25 2.09 3.36 2.67 2.90

CIFAR-10 7.66 7.06 10.61 8.70 9.51
Table 3. Training time in hours (wall clock time) for the baselines and our proposed method. The first two columns represent the training
time for optimizing a single loss, i.e., `∞ attack in the pixel and the DCT basis respectively. The next three columns represent the training
time of the three methods when optimizing over all the 6 losses simultaneously. The reported numbers are averaged over 5 runs.

Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)
Pixel (`∞) 63.12± 19.50 64.40± 25.12 67.73± 14 66.56± 13.45

Pixel (`2) 22.51± 17.66 10.23± 8.40 71.23± 2.68 71.77± 4.25

Pixel (`1) 64.33± 30.73 43.14± 23.57 73.20± 10.54 73.66± 9.47

DCT (`∞) 61.53± 21.45 59.47± 32.83 60.65± 10.60 60.32± 11.34

DCT (`2) 25.80± 18.82 12.28± 12.16 84.58± 2.52 84.46± 4.18

DCT (`1) 66.00± 31.83 38.23± 21.47 72.39± 8.43 73.13± 7.33

Min. Accuracy 22.13± 17.17 9.76± 8.69 57.64± 7.83 57.57± 8.46

Union Attack 12.32± 9.80 3.72± 4.96 35.30± 4.48 35.87± 6.69

Nat. Acc. 77.16± 37.64 60.93± 32.31 91.00± 10.50 91.43± 9.61
Table 4. Comparison of the adversarial accuracies achieved on the MNIST dataset.

Mult.
Weights (h =
3) (wt. avg.)

Mult.
Weights (h =
3) (ensem-
ble)

Pixel (`∞) 39.13± 1.74 40.52± 1.28

Pixel (`2) 71.27± 0.22 71.41± 0.24

Pixel (`1) 46.90± 1.46 48.14± 0.99

DCT (`∞) 42.27± 2.77 43.95± 2.05

DCT (`2) 71.24± 0.12 71.38± 0.20

DCT (`1) 42.96± 1.12 44.49± 0.58

Min. Accu-
racy

39.13± 1.74 40.52± 1.28

Union Attack 36.18± 1.89 37.76± 1.30

Nat. Acc. 80.66± 0.89 80.46± 0.81
Table 5. Adversarial accuracies on the CIFAR-10 dataset by when
using the average of the last three model parameters (convexity
assumption) vs. ensembling the outputs of the last three models.

the intermediate trained models. If the loss functions were
convex then one could replace the ensembling with simply
averaging the model weights and retain the theoretical guar-
antees. Even though we have non-convex losses we still
make the near convexity assumption and average the model
weights to produce a scalable implementation. In Table 5
and Table 6 we compare the performance of our weight av-
eraging strategy with that of the ideal one that ensembles
the models. As can be seen the loss in making the near con-
vexity assumption is negligible.

7. Discussion
We motivated the problem of designing neural networks

that are simultaneously robust to multiple types of adver-
sarial attacks in multiple representation spaces. We pro-
vided a theoretically sound algorithm with training cost that
grows sublinearly with the number of representation spaces.

Mult.
Weights (h =
3) (wt. avg.)

Mult.
Weights (h =
3) (ensem-
ble)

Pixel (`∞) 66.56± 13.45 66.61± 13.77

Pixel (`2) 71.77± 4.25 71.89± 3.79

Pixel (`1) 73.66± 9.47 73.38± 9.45

DCT (`∞) 60.32± 11.34 59.87± 11.32

DCT (`2) 84.46± 4.18 84.34± 4.13

DCT (`1) 73.13± 7.33 73.08± 7.38

Min. Acc. 57.57± 8.46 57.23± 8.51

Union Attack 35.87± 6.69 35.54± 6.69

Nat. Acc. 91.43± 9.61 91.44± 9.62
Table 6. Adversarial accuracies on the MNIST dataset when using
the average of the last three model parameters (convexity assump-
tion) vs. ensembling the outputs of the last three models.

We designed a scalable implementation and showed that
it significantly outperforms strong baselines with training
cost not much more than that of standard adversarial train-
ing. Several future directions emerge from this work. No-
tice that in our proposed algorithm we use the PGD based
method of [18] to optimize the individual losses. There
has been very recent work proposing faster training meth-
ods that achieve similar performance to that of the PGD
method [23, 27]. It would be interesting to incorporate them
in our framework to drive down the training cost even fur-
ther. The benefits of this could be significant as the number
of representation spaces grows.

Finally, we hope that future work on adversarial robust-
ness will consider multiple representation spaces for evalua-
tion of robustness of classifiers to adversarial perturbations.
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8. Proof of Theorem 4.2
Proof. Given the weights w1, w2, . . . wk for the k losses,
we denote by p the normalized probabilities, i.e., pi =

wi/
∑k
j=1 wj . Let p1,p2, . . . ,pT be the sequence of prob-

ability vectors produced by the column players namely the
player that chooses among the k losses. Denote by pt,j the
jth coordinate of the vector pt. Since the player is perform-
ing multiplicative weights updates, by the standard guar-
antee of the multiplicative weights update (see Theorem 2
in [13]) we get that for any i ∈ [k] the following holds

1

T

T∑
t=1

k∑
j=1

pt,jLj(θt) ≥ (1− η)
1

T

T∑
t=1

Li(θt)− 2R
log k

ηT
.

(7)

Setting η = O(ε/R) and T = O(R2 log k
ε2 ) we get that

1

T

T∑
t=1

k∑
j=1

pt,jLj(θt) ≥
1

T

T∑
t=1

Li(θt)− ε. (8)

Hence, denoting by P the uniform distribution over the T
parameters, we get that

Eθ∼PLi(θ) ≤
1

T

T∑
t=1

k∑
j=1

pt,jLj(θt) + ε. (9)

Next we will write down the right hand side in terms
of the optimal value of the objective as in (1). Given the
guarantee that we can solve the adversarial cost sensitive
optimization upto additive error δ, we have that for any t ∈
[T ],

k∑
j=1

pt,jLj(θt) ≤ min
θ

k∑
j=1

pt,jLj(θ) + δ. (10)

Substituting into (9) we get

Eθ∼PLi(θ) ≤
1

T

T∑
t=1

min
θ

k∑
j=1

pt,jLj(θ) + ε+ δ (11)

≤ min
θ

1

T

T∑
t=1

k∑
j=1

pt,jLj(θ) + ε+ δ. (12)

Next for any j ∈ [k] define p̃j = 1
T

∑T
t=1 pt,j . Then we

can rewrite the above as

Eθ∼PLi(θ) ≤
1

T

T∑
t=1

min
θ

k∑
j=1

pt,jLj(θ) + ε+ δ

≤ min
θ

k∑
j=1

p̃jLj(θ) + ε+ δ. (13)

It is easy to check that p̃j ∈ [0, 1] and
∑k
j=1 p̃j = 1. Hence

we get that
∑k
j=1 p̃jLj(θ) ≤ minθ maxj Lj(θ). Substitut-

ing into (13) we get the guarantee of the theorem that for all
i ∈ [k],

Eθ∼PLi(θ) ≤ min
θ

max
j
Lj(θ) + ε+ δ. (14)

Next we prove the consequence when the loss function
L in (2) is convex in its first argument. This is true for
commonly used loss functions in practice such as the cross
entropy loss, squared loss and the hinge loss. We denote by
fθt the network corresponding to the parameter θt and by
fθ̂ the ensembled network i.e.,

fθ̂ =
1

T

T∑
t=1

fθt .

By expanding out Eθ∼PLi(θ) we get

Eθ∼PLi(θ) =
1

T

T∑
t=1

Li(fθt) (15)

=
1

T

T∑
t=1

E(x,y)∼D
[

max
z∈Bi(x)

L(fθt(R−1(z)), y)
]

(16)

≥ max
z∈Bi(x)

1

T

T∑
t=1

E(x,y)∼D
[
L(fθt(R−1(z)), y)

]
(17)

= max
z∈Bi(x)

E(x,y)∼DEθ∼PL(fθ(R−1(z)), y)

(18)

≥ max
z∈Bi(x)

E(x,y)∼DL(Eθ∼P fθ(R−1(z)), y)

(19)

= max
z∈Bi(x)

E(x,y)∼DL(fθ̂(R
−1(z)), y). (20)

Here in the last inequality we have used the fact that L is
convex in its first argument. Substituting back into (14) we
get that fθ̂ satisfies that for all i ∈ [k],

Li(fθ̂) ≤ min
θ

max
j
Lj(θ) + ε+ δ. (21)

9. Further Experiments
In this section we present the results of evaluating our

trained multiplicative weights method based algorithm from
Figure 3, as well as the greedy and the round robin heuris-
tics, against the PGD based attack where the PGD method
is run with 20 random restarts in order to find an adversar-
ial example. Tables 7 shows the results for the CIFAR-10



Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)
Pixel (`∞) 34.16± 6.57 28.28± 1.53 34.01± 6.38 37.24± 1.89

Pixel (`2) 64.74± 1.73 67.33± 0.27 64.97± 3.03 66.94± 0.28

Pixel (`1) 45.26± 3.11 53.08± 0.72 43.46± 4.99 46.25± 1.44

DCT (`∞) 42.64± 9.02 43.62± 1.74 37.17± 6.92 39.93± 3.01

DCT (`2) 64.66± 1.71 67.26± 0.38 65.03± 2.88 66.98± 0.30

DCT (`1) 37.07± 6.84 41.01± 0.81 39.16± 5.86 42.52± 1.17

Min. Accuracy 32.50± 5.31 28.28± 1.53 34.01± 6.38 37.24± 1.89

Union Attack 30.29± 4.24 28.07± 1.48 31.61± 6.07 34.63± 2.02

Nat. Acc. 78.56± 1.46 81.80± 0.38 79.64± 0.51 80.66± 0.89
Table 7. Comparison of the adversarial accuracies achieved on the CIFAR-10 dataset by the greedy algorithm, the round robin algorithm
and our proposed algorithm in Figure 3.

Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)
Pixel (`∞) 53.50± 24.05 59.60± 24.55 60.88± 17 60.01± 16.61

Pixel (`2) 7.50± 4.48 6.04± 4.27 63.32± 8.25 63.47± 7.72

Pixel (`1) 63.60± 30.36 41.98± 22.87 72.23± 10.54 72.51± 9.68

DCT (`∞) 53.80± 24.53 53.24± 22.41 55.29± 12.16 54.81± 13.09

DCT (`2) 9.18± 5.19 5.90± 5.71 79.97± 5.92 79.50± 6.50

DCT (`1) 65.45± 31.95 36.81± 21.10 71.74± 8.49 72.51± 7.33

Min. Accuracy 7.31± 4.38 5.19± 4.72 52.53± 11.31 53.29± 12.73

Union Attack 3.37± 3.10 1.97± 3.03 27.65± 7.06 28.09± 9.38

Nat. Acc. 77.16± 37.64 60.93± 32.31 91.00± 10.50 91.43± 9.61
Table 8. Comparison of the adversarial accuracies achieved on the MNIST dataset by the greedy algorithm, the round robin algorithm and
our proposed algorithm in Figure 3.

dataset and Table 8 shows the results for the MNIST dataset.
Furthermore, Table 9 shows the results for the Tiny Ima-
geNet dataset. Similar to the results presented in Section 6,
the multiplicative weights method significantly outperforms
the baselines on both the minimum accuracy metric and
accuracy against a union attack. Finally, in Table 10 we
present the performance of our algorithm for against both
pixel based `p perturbations and perturbations that corre-
spond to small image rotations (up to 30◦).

Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)
Pixel (`∞) 13.93± 3.92 12.54± 0.2 14.8± 0.26 14.97± 0.25

Pixel (`2) 14.65± 2.59 16.36± 0.34 17.55± 0.33 17.84± 0.32

Pixel (`1) 22.10± 0.88 26.66± 0.30 26.15± 0.36 26.45± 0.31

DCT (`∞) 17.17± 4.47 16.87± 0.38 17.60± 0.43 17.96± 0.31

DCT (`2) 14.65± 2.59 16.36± 0.31 17.53± 0.35 17.84± 0.35

DCT (`1) 16.74± 4.61 18.71± 0.23 20.19± 0.19 20.27± 0.20

Min. Accuracy 13.42± 3.63 12.54± 0.20 14.80± 0.26 14.97± 0.25

Union Attack 11.90± 3.05 12.10± 0.27 14.04± 0.24 14.20± 0.18

Nat. Acc. 44.37± 1.46 46.75± 0.23 45.48± 0.29 45.71± 0.48
Table 9. Comparison of the adversarial accuracies achieved on the Tiny ImageNet dataset by the greedy algorithm, the round robin algorithm
and our proposed algorithm in Figure 3.



Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)
Pixel (`∞) 24.90± 22.28 23.10± 16.65 36.53± 4.97 38.43± 4.77

Pixel (`2) 26.82± 23.67 26.23± 18.40 39.38± 5.03 41.08± 4.60

Rotation 61.26± 20.77 27.40± 3.07 34.57± 3.06 33.85± 2.00

Min. Accuracy 24.14± 21.55 19.71± 13.59 33.96± 3.96 32.94± 2.53

Union Attack 17.79± 16.03 11.97± 8.42 20.80± 3.39 21.04± 2.04

Nat. Acc. 84.81± 5.64 72.73± 4.92 78.52± 1.97 79.03± 0.91
Table 10. Comparison of the adversarial accuracies achieved on the CIFAR-10 dataset by the greedy algorithm, the round robin algorithm
and our proposed algorithm in Figure 3.


