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A. Implementation Details
In this section, we (i) provide details about the four dif-

ferent point propagation strategies we experimented with
for forming a 4D point clouds and (ii) we detail the point
overlap based association procedure we use to link 4D ob-
ject instances across overlapping point clouds.

A.1. 4D Point Cloud Formation

Our method works on directly 4D volumes which con-
structed using consecutive lidar scans. However, due to
memory constraints stacking all points is not feasible. To
reduce memory usage, when we process the scan fi together
with previous scans fi−τ ,..., fi−1, we take all of the points
from fi and sub-sample points from other scans. Moreover,
since we already processed previous scans fi−τ ,..., fi−1 be-
fore, we know the semantic class and objectness scores of
all points at time step f for that scans. We use three dif-
ferent strategy to sub-sample point from previous scans by
leveraging these information.

Thing Propagation: In this strategy, we only sample
points from previous scans if the points are assigned to a
thing class. If the total number of points are exceeded the
gpu memory limit, we randomly sub-sample again.

Importance Sampling: We select 10% of points from a
previous scans using the objectness score predicted by the
network in the previous time steps. Thus, points with higher
objectness scores have a higher chance to be used in the
clustering process in the following scans.

Temporal Decay: In this strategy, we use importance sam-
pling using objectness scores again. However, instead of
sampling 10% of points from each past scan, we select the
percentage of points based on temporal proximity of scans.
Given a temporal window size of τ , we select the number
of points ni as:

ni =
ei∑τ−1
n=1 e

i
, i = 1, 2, 3, . . . , τ − 1, (1)

where nτ−1 is the closest scan to the current scan. In this
strategy more points would be sampled from scans which
are temporally close.

Temporal Stride: We used importance sampling in this
strategy, but instead of using points from previous scans,
i.e., i = 1, 2, 3, . . . , τ − 1, we used every second scan, i.e.,
i = 1, 3, 5, . . . , τ − 1. For the points from the remaining
scans, we assigned predictions by looking at the closest
points, which had class and instance prediction.

A.2. Clustering

Our method can cluster points with different semantics
and does not provide a single class label for a specific in-
stance. This can be adapted depending on the requirements
of the downstream application (e.g., via majority vote).
Moreover, if the number of points that assigned to a specific
cluster is lower than a threshold, we eliminate that instance
from the final prediction.

A.3. Tracking

As discussed in the main paper (Section 3), we process
multiple scans together in an overlapping fashion. For a
window size of τ , at time t, we process scans f ti−τ , . . . , f

t
i

together by overlapping them in a 4D point cloud. f ti repre-
sent the scan i which processed at time step t.

To associate instances at time t and t + 1, we look at
instance intersections in scans which are common in both
time steps. For instance, with temporal window size of two,
we would process scans f11 and f12 , next we would process
f22 and f23 together. To transfer ids from the previous time to
the current scan (f23 ), we would look the instance intersec-
tions in scans which processed on both time step (f12 and
f22 ). Since the instance ids are same for the scans which
processed together ( f22 and f23 ), the association would be
finished between overlapping 4D volumes.

For the intersection, we consider all common scans.
When there is a conflict (i.e, one instance has overlap with
two instance in the next step), we pick the instance pair
which have higher intersection-over-union. If any of the



(a) Sassoc = 0.68, Scls = 0.91,MOTSA = 0.47, PTQ = 0.47

(b) Sassoc = 0.51, Scls = 0.68,MOTSA = −0.4, PTQ = 0.10

(c) Sassoc = 0.50, Scls = 0.73,MOTSA = 0.2, PTQ = 0.4

time

Figure 1: Comparison of evaluation metrics for some failure cases. Respective instances which we calculate the metrics are
depicted with bounding boxes. In (a) ID recovery is punished by MOTSA and PTQ. In (b) two instances predicted as single
instance and in (c) ID switch happened and in the second scan the instance is not segmented correctly.

# Scans LSTQ Sassoc Scls IoUSt IoUTh

1 51.92 45.16 59.69 64.60 60.40
2 59.86 58.79 60.95 64.96 63.06
3 61.74 62.65 60.85 65.16 62.53
4 62.74 65.11 60.46 65.36 61.26
6 61.52 64.28 58.88 65.32 57.38
8 59.09 62.30 57.68 65.23 54.52

Table 1: Panoptic Tracking on SemanticKITTI valid. set.

intersections do not surpass IoU of 0.5, we create a new ID
for the instance.

B. Additional Results
B.1. Ablation on the Temporal Window Size

In Tab. 1, we highlight the performance of our method
for temporal window size τ = 1, 2, 3, 4, 6, 8. As can be
seen, the association accuracy is increasing up to τ = 4
and then saturates, while classification accuracy saturates a
τ = 2; however, it only decreases marginally.

B.2. Per-class Evaluation

In this section, we analyze the performance on the val-
idation split (Tab. ??) through the lens of several evalua-
tion metrics and analyze per-class performance in Tab. 2
(this table extends Tab. ?? from the main paper). While
our 4-scan variant performs better than the 2-scan variant
in terms of LSTQ, we observe a significant drop in the
MOTSA score. Our analysis shows that this is because we
obtain negative MOTSA scores on some classes due to a

decrease in precision while having fewer ID switches. This
unintuitive behavior of MOTSA can be further validated
when analysing performance for class, e.g., other-vehicle.
For this class the IDS reduces (162 → 99), the precision
drops (0.68 → 0.47), while recall improves from (0.36 →
0.47). In our metric, this is reflected in the decrease of
Scls (0.56 → 0.55) and increase in Sassoc (0.17 → 0.38)
while MOTSA unintuitively drops from 0.12 to −0.1, even
though association capabilities improve.

We visualize such cases in Fig. 1. As can be seen, the
difference is due to the semantic interpretation of the points
and not due to the segmentation and tracking quality at the
instance level. This confirms the nonintuitive behavior of
MOTSA, while our metric provides insights on both se-
mantic interpretation and instance segmentation and track-
ing. As shown in Figure 1a-1c, our method successfully
recovers the ID of the instance. This behavior is penal-
ized by both MOTSA and PTQ, but not by the association
score of our metric Sassoc. Moreover, while the instances
tracked reasonably well in Figure 1b, MOTSA and PTQ
scores decrease substantially due to poor segmentation of
the instances.

Finally, we acknowledge that our method works very
well on the most frequently occurring object classes (car),
however, segmenting and tracking objects that appear in the
long tail of the object class distribution remains challeng-
ing.



Category # Scans # Instances % Instances TP FP FN IDS Prec. Recall MOTSA Sassoc Scls

Car 2 29255 0.80 27553 687 1702 1204 0.98 0.94 0.88 0.72 0.96
4 27401 845 1854 720 0.97 0.94 0.88 0.77 0.96

Truck 2 1253 0.03 447 226 806 90 0.66 0.36 0.10 0.15 0.38
4 496 331 757 52 0.60 0.40 0.09 0.20 0.39

Bicycle 2 792 0.02 435 132 357 64 0.77 0.55 0.30 0.36 0.72
4 574 230 218 43 0.71 0.72 0.38 0.59 0.71

Motorcycle 2 255 0.01 209 151 46 31 0.58 0.82 0.11 0.56 0.88
4 231 747 24 9 0.24 0.91 -2.06 0.81 0.74

Other-vehicle 2 2138 0.06 778 362 1360 162 0.68 0.36 0.12 0.17 0.56
4 1022 1131 1116 99 0.47 0.48 -0.10 0.38 0.55

Person 2 1975 0.05 1183 282 792 203 0.81 0.60 0.35 0.31 0.65
4 1180 346 795 143 0.77 0.60 0.35 0.35 0.63

Bicyclist 2 816 0.02 720 39 96 33 0.95 0.88 0.79 0.63 0.89
4 750 39 66 28 0.95 0.92 0.84 0.69 0.91

Motorcyclist 2 78 0.01 0 0 78 0 0.00 0.00 0.00 0.10 0.00
4 0 0 78 0 0.00 0.00 0.00 0.16 0.00

Table 2: Per-class tracking evaluation on Semantic-KITTI validation set (2 and 4 scan versions).


