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A. Contents
Supplement B : Needs for STR with Fewer Real Labels

* We complement the needs for STR with fewer real la-
bels by illustrating the detailed examples.

Supplement C : STR Datasets - Details and More Exam-
ples

* We describe the detail of preprocessing in §3 and show
more examples of public real data.

Supplement D : STR With Fewer Labels - Details

¢ We describe the details of STR models and semi- and
self-supervised methods in §4.

Supplement E : Experiment and Analysis - Details

* We provide the details and comprehensive results of
our experiments in §5.

B. Needs for STR with Fewer Real Labels

In this section, we complement the necessity of training
STR models only on fewer real labels (STR with fewer la-
bels). The study of STR with fewer labels generally aims fo
exploit a few real labels efficiently. We describe the detailed
examples of two needs as mentioned in §1, and introduce
an additional need based on our experimental results.

Need #1: To recognize handwritten or artistic data in
public real datasets Figure | shows the handwritten or
artistic data in public real datasets. It is difficult to gener-
ate them with the current synthetic engine [9, 6]. If we have
appropriate handwritten fonts, we can generate similar texts
with handwritten texts synthetically and cover some of the
handwritten texts. However, because the number of fonts
(about thousands) is quite lower than the number of people,
there can still be uncovered handwritten texts by handwrit-
ten fonts. Furthermore, generating artistic texts with hand-
written fonts is difficult: artistic texts such as text logo and
calligraphy as shown in Figure 1.

(b) Examples from real datasets other than benchmark datasets.

Figure 1: Handwritten or artistic texts in public real data.

) GT :laugh
,“;j/f\_l,l - _Real : Laugh
& Synth: Lugh

B GT : Exciting
Real : ExCiting
Synth: Esciting

'GT :Cafe
Real : Cafe

Figure 2: Predictions on handwritten or artistic texts. GT,
Real, and Synth denote the ground truth, the prediction
of TRBA-Baseline-real, and TRBA-Baseline-synth, respec-
tively.

In this case, exploiting the few real data of them can be
more efficient rather than generating synthetic data close to
them. Namely, we need STR with fewer labels in this case.
Figure 2 shows the predictions by trained models (TRBA-
Baseline-real and -synth) in our experiments. The model
trained with real data (Real) has better performance than
that with synthetic data (Synth). These results show that ex-
ploiting real data can be useful for these types of texts.

Need #2: To recognize language other than English
(LOTE) without synthetic data In the other case, when
we have to recognize LOTE, there are not always synthetic



Model: CRNN

Model: TRBA

‘COCO RCTW Uber ArT LSVT MLT19 ReCTS AVg.‘COCO RCTW Uber ArT LSVT MLTI9 ReCTS Avg.

Method

Baseline-synth | 37.4 503 32.1 48.1 503 74.6 73.6
Baseline-real 46.3 543 458 48.1 58.6 78.2 74.7
PR 56.6 61.1 448 58.7 622 82.5 80.9

523 | 502 59.1 367 57.6 580 803 80.6 | 60.4
58.0 | 62.7 67.7 527 632 687 858 83.4 1692
63.8 | 66.9 715 542 6677 735 8738 856 | 723

Table 1: Accuracy of seven evaluation datasets: COCO, RCTW, Uber, ArT, LSVT, MLT19, and ReCTS. Avg. denotes the
averaged accuracies of seven datasets. The number of evaluation sets of each datasets is described in Table 2.

data for LOTE. For such a case, we should recognize LOTE
without synthetic data or generate synthetic data.

However, generating appropriate synthetic data for
LOTE is difficult for those who do not know target lan-
guages. When we generate synthetic data, we should pre-
pare at least three elements: 1) Word vocabulary (word cor-
pus or lexicon). 2) Characters that compose words. 3) Font
to render words. However, for people who do not know
LOTE, preparing three elements for LOTE is difficult; diffi-
cult to decide appropriate words, characters, and fonts. In
addition, some languages have specific rules to generate
their languages. For example, Arabic texts have two differ-
ent features from English: 1) They are written from right to
left. 2) Some of the Arabic characters change their shape
depending on their surrounding characters. These factors
make generating synthetic data of Arabic difficult for those
who do not know Arabic.

In this case, when we have to recognize LOTE but gen-
erating synthetic data for LOTE is difficult, we need to
achieve competitive performance with a few real labels.

Need #3: Current public synthetic data can be in-
appropriate to datasets other than STR benchmark
datasets In addition to evaluation on benchmark datasets
in §5.2, we also evaluate the other seven datasets: COCO,
RCTW, Uber, ArT, LSVT, MLT19, and ReCTS. Table 1
shows the results. Baseline-real has higher accuracy than
Baseline-synth (Avg. 58.0% vs. 52.3% for CRNN and
69.2% vs. 60.4% for TRBA). Our best setting PR success-
fully improve Baseline-real (Avg. +5.8% for CRNN and
+3.1% for TRBA). These results indicate that fewer real
data (Real-L) can be more appropriate to evaluation sets
of these seven datasets, rather than current synthetic data
(MJ+ST). We presume that because some of the fewer real
data (Real-L) derive from the same domain with evaluation
sets of seven datasets, Baseline-real has higher accuracy.
Namely, using only fewer real data collected from the target
domain can be more significant than using large synthetic
data from the other domain. This indicates that studies on
STR with fewer labels are necessary, fully exploiting few
real data derived from the target domain.

Detailed survey of the literatures of STR with fewer real
labels As mentioned in §1, after emerging large synthetic
data [9](2014), the study of STR with fewer labels has de-

creased. Thus, there are only a few studies on STR with
fewer labels for five years. Searching for studies on STR
with fewer labels is difficult. In this work, we struggle to
search for studies on STR with fewer labels via the widely-
used search engine: Arxiv Sanity'.

Specifically, we search studies with query “text recogni-
tion” from 2016 to 2020. The number of searched papers
is 131 papers. We manually check the contents of all of
them, and find four papers related to STR with fewer la-
bels; they only use real data rather than synthetic data. Three
of them are published three or four years ago, and do not
use deep learning based methods; Mishra ez al. [23](2016)
uses the conditional random field model and support vector
machine. Lou et al. [22](2016) uses the generative shape
model and support vector machine. Bhunia et al. [2](2017)
uses the hidden Markov model and support vector machine.
However, it is difficult to compare them with recent state-
of-the-art methods. Because their evaluation data are differ-
ent from the recent STR benchmark: they all do not eval-
uate on IC15, SP, and CT. In addition, they use lexicons
for calculating accuracy. In general, the accuracy calcu-
lated with the lexicon has higher accuracy than the one cal-
culated without the lexicon. Thus, comparing them is un-
fair. Recent state-of-the-art methods present both accura-
cies calculated with lexicons and calculated without lexi-
cons [29, 31, 42, 14, 39, 35] or do not present the accuracy
calculated with lexicons [1, 36, 28, 40, 24]. Therefore, the
former can be compared with the three methods [23, 22, 2]
but the latter cannot. The process of using lexicon to cal-
culate accuracy is as follows: 1) IIIT, SVT, and SP have
predefined lexicons which contain a target word and some
candidate words. 2) Transform the output word from the
model into the closet word in predefined lexicons. 3) Calcu-
late accuracy between transformed one and the target word.

Another paper uses deep learning based meth-
ods [43](2019). The paper addresses recognizing English
and Chinese texts. However, strictly speaking, the paper
describes scene text spotting (STS), which is the com-
bination of scene text detection (STD) and STR, rather
than sole STR. Because they do not describe the result of
STR in their paper, it is difficult to compare their method
with other STR methods. From the results of STS, we can

Uhttp://www.arxiv-sanity.com/



presume that their detector has great performance but their
recognizer has a less competitive performance to other
English STR methods. Because they won 1st for STS in
the ArT competition (English only), but they recorded
15th of 23 teams for STR in the ArT competition (English
only)”. However, this is not a concrete comparison but only
our presumption. We need the results on STR benchmark
datasets rather than the results of STS to compare their
method with other STR methods.

It is currently difficult to search for studies on STR with
fewer labels and compare those studies with state-of-the-art
methods. We hope that our study becomes the appropriate
study on STR with fewer labels that can be easily searched
and compared.

C. STR Datasets - Details and More Examples

In this section, we describe the details of our preprocess-
ing process in §3. Furthermore, we illustrate more examples
of real data.

C.1. Preprocessing Real Datasets

Consolidating real datasets We collect SVT and IIIT from
their web page®*. However, the labels of training set of SVT
and IIIT are case-insensitive; they are all uppercase alpha-
bet. We use case sensitive data of SVT and IIIT corrected by
[21]°. We collect IC13, IC15, COCO, ArT, LSVT, MLT19,
and ReCTS from the web page of ICDAR competition®. We
download RCTW and Uber from their web page’-%.

Excluding duplication between datasets If we do not
pay attention the duplication between datasets, we might
use the training set that includes some of the evaluation set.
To avoid this duplication, we investigate the duplication be-
tween all training set and all evaluation set. Specifically, we
investigate whether the scene images of training sets match
the scene images of evaluation sets. As a result, we find that
the training set of Art and the evaluation set of CT have 27
duplicated scene images and 122 duplicated word boxes, as
shown in Figure 3. We exclude them for a fair comparison.
The journal version paper of Total-Text [4] indicates that
some of the word boxes in Total-Text are duplicated in CT.
ArT includes Total-Text, and therefore some of the word
boxes in ArT can be also duplicated in CT. However, we do
not know how many Total-Text images are in the training

Zhttps://rrc.cve.uab.es/?ch=14&com=evaluation&task=2

3http://vision.ucsd.edu/ kai/svt/

“https://cvit.iiit.ac.in/research/projects/cvit-projects/the-iiit-5k-word-
dataset

Shttps://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-
Datasets

Shttps://rrc.cve.uab.es/

https://rctw.vIrlab.net/dataset

Shttps://s3-us-west-2.amazonaws.com/uber-common-
public/ubertext/index.html

Figure 3: Duplicated scene images. These images are found
in both the training set of ArT and the evaluation set of CT.

(b) Image from LSVT

(a) Image from ArT

Figure 4: Similar scene images. These images are found in
both training sets of ArT and LSVT. They are different im-
ages but contain the same texts; the text regions of ArT are
usually more enlarged than LSVT.

set of ArT. Thus, we investigate the duplicated word boxes
by comparing scene images of ArT and CT. For another ex-
ample, according to [1], 215 word boxes are duplicated in
the training set of IC03 and the evaluation set of IC13. This
is one of the reasons why we exclude IC03; the other reason
is that IC13 inherits most of IC03 data.

According to [3], ArT includes the subset of LSVT. We
cannot find duplicated images by matching scene images
because they are slightly different, as shown in Figure 4.
In this case, we investigate duplication by matching labels
of scene images. As a result, we find that the training set
of Art and the training set of LSVT have 814 similar scene
images (433 scene images for English) and 4,578 similar
word boxes (861 word boxes for English).

However, since labels of scene images for the evalua-
tion set of ArT and LSVT are not provided, we cannot find
duplication by matching labels of scene images. Thus, it is
difficult to exclude the duplication between the evaluation
set of ArT and the training set of LSVT. If there are dupli-
cated images between them, comparing the accuracy of ArT
between a method that uses the training set of LSVT and an-
other method that does not use the training set of LSVT can
be unfair.

In the case of evaluation on LSVT, in our experiments,
we split the training set of LSVT into training, validation,
and evaluation set. We exclude the duplicated word boxes
between the training set of ArT and the evaluation set (after
splitting) of LSVT; exclude 74 word boxes in the evaluation
set of LSVT. In our experiments, we would like to use more
real data for training and validation; thus, we exclude the



duplicated word boxes in the evaluation set of LSVT rather
than exclude training and validation sets of ArT.

Collecting only English words In this study, we take
only English and symbols. Specifically, we exclude Chinese
characters in RCTW, ArT, LSVT, and ReCTS. For MLT, all
word labels have “a script label” representing the language
of each word label. We exclude the words whose script label
is Arabic, Chinese, Japanese, Korean, Bangla, or Hindi.

Excluding don’t care symbol Don’t care symbol “*” or
“#” is usually included in recent public real data: RCTW,
Uber, ArT, LSVT, MLT19, and ReCTS. We do not conduct
this filtering on SVT, IIIT, IC13, IC15, and COCO.

We do not exclude the texts contains “#” symbol. In-
stead, we only exclude the texts is “#7, “##”, “#HH#”, or
“####”. Therefore, we can train “#” symbol with other char-
acters. In the case of MLT19, we only exclude the texts is
“HIHE? or “HHHE.

In contrast to “#” symbol, we exclude the image whose
label contains “*” symbol in Uber. About half of Uber im-
ages (149K of 285K training images) contain “*” symbol.
Although some of them are sufficiently readable, they con-
tain “*” symbol. Thus, we exclude them because they can
be the noise of data.

Excluding vertical or = 90 degree rotated texts As de-
scribed in §3.3, we mainly focus on horizontal texts and
thus exclude vertical texts. For the characters such as “1, i,
j» 1, t7 and the words such as “it”, their height usually are
greater than their width. To avoid excluding these charac-
ters and words, we only exclude images whose texts have
more than two characters and whose height is greater than
the width.

Splitting each real dataset into training, validation, and
evaluation sets Table 2 shows whether each dataset orig-
inally has training, validation, and evaluation sets. Some
datasets do not have them, and thus we split the training
set of the dataset. For example, RCTW, LSVT, and MLT19
only have a training set. Thus we split the training set of
each dataset into training, validation, and evaluation sets
with ratios of 80%, 10%, and 10%, respectively. The evalu-
ation sets of RCTW, LSVT, and MLT19 have been released,
but the evaluation sets only contain images and do not con-
tain labels. Therefore, we cannot evaluate their evaluation
sets, and thus RCTW, LSVT, and MLT19 are considered
not to have the evaluation set.

In the other case, SVT, IIIT, IC13, IC15, ArT, and
ReCTS do not have a validation set, and thus we split the
training set of each dataset into training and validation sets
with ratios of 90% and 10%, respectively.

COCO and Uber originally have training, validation, and
evaluation sets. Thus we use their original training, valida-
tion, and evaluation sets. We do not split their training sets.

Table 2 shows the number of word boxes used in our

Check for inclusion # of word boxes
Dataset Train. Valid. Eval. Train. Valid. Eval.

Real labeled datasets (Real-L)

SVT v - v 231 25 647
T v - v 1,794 199 3,000
IC13 v — v 763 84 1,015
IC15 v - v 3,710 412 2,077
COCO v v v 39K 9,092 9,823
RCTW v — - 8,186 1,026 1,029
Uber v v v 92K 36K 80K
ArT v - v 29K 3,202 35K
LSVT v - - 34K 4,184 4,133
MLT19 v — — 46K 5,689 5,686
ReCTS v — v 23K 2,531 2,592
Total - — 276K 63K 146K

Table 2: Number of word boxes used in our experiments,
after splitting each real dataset into training, validation, and
evaluation sets.

experiments. The number is calculated as follows: 1) Con-
duct preprocessing on the training set of each dataset as de-
scribed in §3.3 and §C.1. 2) Following the base code [1],
exclude the images whose texts have more than 25 charac-
ters in our experiments.

Detector for cropping texts in unlabeled scene im-
ages Unlabeled datasets described in §3.2 contain scene
images. The scene images do not have labels indicating
text region. Therefore, we use pretrained scene text detec-
tion (STD) model for cropping texts in the scene images.
In this paper, we assume the case when we have to train
STR models without synthetic data. In this case, we cannot
train STD model with synthetic data, and thus we use STD
model trained only on real data, called BDN [19]. BDN has
two versions; 1) BDN published in IJCAI [20] use synthetic
data (ST [6]) for training. 2) BDN used for ReCTS compe-
tition [19] do not use synthetic data. We use the second one
for cropping texts in unlabeled scene images.

C.2. More Examples of Public Real Data

Recently, various types of texts have been accumu-
lated. They can improve the robustness of STR models. We
present more examples of public real data. Figure 5 shows
the examples of benchmark datasets for evaluation, as de-
scribed in §2.2. Figure 6, 7, and 8 are the extended versions
of Figure 3 in §3. Figure 6 shows examples of accumulated
real labeled data for Year 2011, 2013, and 2015. Figure 7,
and 8 show examples of that of Year 2017 and 2019, respec-
tively. Figure 9 shows examples of unlabeled scene images
and word boxes after cropping.
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Figure 5: Examples of benchmark datasets for evaluation. SVT, IIIT, and IC13 are regarded as regular datasets. They contain
many horizontal texts. IC15, SP, and CT are regarded as irregular dataets. They contain many perspective or curved texts.
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(c) Year 2013: IC13 (d) Year 2015: IC15

Figure 6: Examples of public real datasets for Year 2011 (SVT), Year 2013 (IIIT and IC13), and Year 2015 (IC15). SVT, IIIT,
and IC13 contains many horizontal texts. IC15 contains many perspective or blurry texts.

(b) RCTW: Most images are collected in China. (c) Uber contains many house number or signboard texts.

Figure 7: Examples of public real datasets for Year 2017: COCO, RCTW, and Uber.



(d) ReCTS contains texts arranged in various layouts or texts written in difficult fonts.

Figure 8: Examples of public real datasets for Year 2019: ArT, LSVT, MLT19, and ReCTS.
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(d) Book32: word boxes after cropping. (e) TextVQA: word boxes after cropping. (f) ST-VQA: word boxes after cropping.

Figure 9: Examples of unlabeled datasets: Book32, TextVQA, and ST-VQA. We show their scene images and word boxes
after cropping.



D. STR With Fewer Labels - Details

We describe more details of STR models and semi- and
self-supervised learning in §4.

D.1. Description of STR Models

We select two models in order to represent that our ex-
perimental results are not limited to a specific STR model.
We adopt two widely-used STR models in STR benchmark
repository [ 1°: CRNN [29] and TRBA [1].

CRNN, the abbreviation of Convolutional-Recurrent
Neural Network, is the first model that combines convo-
lutional neural networks (CNNs) and recurrent neural net-
works (RNNs) for STR. CRNN is regarded as a basic
and lightweight STR model. Thus, CRNN is usually se-
lected as one of the baseline models. Also, CRNN is some-
times adopted to the STR part of scene text spotting that
is the combination of scene text detection and recogni-
tion [16, 15, 18]. CRNN consists of 7 layers of VGG-like
CNN:s, 2 layers of BiLSTM, and CTC decoder.

TRBA, the abbreviation of TPS-ResNet-BiLSTM-
Attention, has the best performance in STR benchmark
repository [1]. TRBA is also usually selected as one of
the baseline models [17, 37, 10, 27, 38]. TRBA consists
of 4 layers of CNNs for TPS, 29 layers of ResNet, 2 lay-
ers of BILSTM, and an attention decoder. According to [1],
TRBA is created by composing existing modules used in
prior works. Thus, TRBA can be regarded as a variant of
RARE [30]. RARE is a well-known architecture that intro-
duces an image transformation module into STR models.
The main differences between TRBA and RARE are as fol-
lows: TRBA uses 1) ResNet instead of VGG-like CNNs.
2) BiLSTM instead of GRU. TRBA can be also regarded
as a variant of another widely-used baseline model called
ASTER [31] because ASTER is the successor of RARE.
The main differences between TRBA and ASTER are as
follows: 1) Details of TPS. 2) ASTER uses a bidirectional
attention decoder.

D.2. Objective Function

We use labeled training set D; = {(x1,41), ., (Tn, yn) }
and unlabeled training set D,, = {uq, ..., uy, } to calculate
object function, where z is the labeled training image, y is
the word label, and u is the unlabeled training image.

Objective function for STR STR models are trained by
minimizing the objective function as follows,

1
Erecog - *@( Z 1ng(y|x) (1)

z,y) €Dy

where p(y|z) is the conditional probability of word label.

“https://github.com/clovaai/deep-text-recognition-benchmark

Objective function for semi-supervised learning Pseudo-
Label (PL) [12] uses pseudolabeled training set D, =
{(u1,81); ey (Um, Sm )} for training, where s is the pseu-
dolabel of u. The object function of PL calculated as fol-

lows, )
o > logp(slu) )

‘ s (u,s)€Ds

L= »Crecog -

where p(s|u) is the conditional probability of the pseudola-
bel.

Mean Teacher (MT) [34] uses the object function as fol-
lows,

1 7 o
L= £reCOg""O‘m % MSE(fg([.’E,U} ])’ f@/([f[],u] ! ))
3)

where [z;u] denotes the concatenation of = and u. n and
7/ denote two random augmentations. [z;u)” and [z;u]"
are the images augmented by 1 and 7/, respectively. MSE
denotes the mean squared error, fy is the student model, fy
is the teacher model, and « is coefficient of MSE loss.

Objective function for self-supervised learning The pre-
text task of RotNet [5] is conducted by minimizing the ob-
jective function as follows,

1 1 ”
LRot = —ﬁw Z Z logp(r\u ) 4

reRueD,,

where R is the set of four rotation degrees
{0°,90°,180°,270°}, p(r|u”) is the conditional prob-
ability of rotation degree, and u” is the unlabeled image
u rotated by 7. This objective function conducts 4-class
classification.

Following the authors of MoCo [7], we calculate in-
foNCE [25]. For each mini-batch, we obtain queries q and
keys k as described in §4.3. For each pair of a query ¢ and
a key k, we consider that the key is positive if they de-
rive from the same image, otherwise negative. MoCo uses
a dictionary that contains negative keys. The dictionary is a
queue that enqueues keys from the current mini-batch and
dequeues keys from the oldest mini-batch. The dictionary
size K is generally much larger than the batch size. For each
query g, we calculate the object function as follows,

exp(q " kpos /)

K
2imoexp(q " ki/T)
where 7 is the temperature value, k,,s is the positive
key. This object function conducts (K +1)-way classifica-
tion with the softmax function on K negative keys and 1
positive key.

®)

Ly = —log

E. Experiment and Analysis - Details

We show more details of our implementation and the ex-
tended version of our experiments.



Setting Description

Baseline-synth  Model trained on 2 synthetic datasets (MJ+ST)
Baseline-real Model trained on 11 real datasets (Real-L)
Aug. Best augmentation setting in our experiments
PR Combination of Aug., PL and RotNet

Table 3: Description of our experimental settings.

E.1. Implementation Detail

In this section, we describe common factors in our exper-
iments. Specific factors of each experiment are described at
the beginning of each experiment.

Description of our settings Table 3 shows the description
of our main experimental settings.

Training strategy Input images are resized into 32 x 100.
We use He’s initialization method [8] and gradient clipping
at magnitude 5. The maximum word length is 25.

We use 94 characters for prediction, same with [31]:
26 upper case alphabets, 26 lower case alphabets, 10 dig-
its, and 32 ASCII punctuation marks. In addition, 3 special
tokens are added: “[PAD]” for padding, “[UNK]” for un-
known character, and *“ ” for space between characters. For
CTC decoder, “[CTCblank]” token is also added. For atten-
tion mechanism, “[SOS]” and “[EOS]”, which denote the
start and end of sequence, are added.

As shown in Table 2, the number of training set is imbal-
ance. To handle data imbalance, we sample the same num-
ber of data from each dataset to make a mini-batch. For ex-
ample, when we use 11 datasets for training, we sample 12
images (= round(128/11)) per dataset to make a mini-batch.
As aresult, the batch size slightly changes depending on the
number of datasets for training. However, the difference is
marginal in our experiments and thus we use the balanced
mini-batch. We also use the balanced mini-batch for three
unlabeled datasets: 43 images (= round(128/3)) per dataset
to make a mini-batch.

Evaluation metric As described in §5.1, the word-level ac-
curacy is calculated only on the alphabet and digits. Follow-
ing common practice [31], the accuracy is calculated only
on alphabet and digits, after removing non-alphanumeric
characters and normalizing alphabet to lower case.

Differences from the base code [1] We use the code of
the STR benchmark repository as our base code. The code
used in the STR benchmark is different from our settings:
We use 1) All text in ST (7M) while the base code uses
only alphanumeric texts in ST (5.5M), 2) Adam [ | 1] instead
of Adadelta [41], 3) An one-cycle learning rate schedul-
ing [32], 4) Batch size reduced from 192 to 128, 5) Up-
per/lower case alphabets, digits, and some symbols (94
characters in total) for training while the base code uses
lower case alphabets and digits (36 characters in total) for
training, 6) The balanced mini-batch. This is not used for

STR benchmark paper. 7) The CTCLoss from the PyTorch
library instead of the CTCLoss from Baidu'". According to
the STR benchmark repository'!, the CTCLoss from Baidu
has higher accuracy by about 1% for CRNN than the CT-
CLoss from PyTorch library. In addition, 8) we construct
and use our own validation set. 9) We calculate total accu-
racy on union of SVT, IIIT, IC13, IC15, SP, and CT, ex-
cept for IC03. ICO3 usually has higher accuracy than other
datasets (over 90% accuracy), and thus excluding IC03 re-
sults in lower total accuracy than that of including IC03.

Environment : All experiments are conducted using Py-
torch [26] on a Tesla V100 GPU with 16GB memory.

E.2. Comparison to State-of-the-Art Methods

We present the extended version of Table 2 in §5.2. Ta-
ble 2 in §5.2 lists the methods that use only MJ and ST
for training, and evaluate six benchmarks: IIIT, SVT, IC13-
1015, IC15-2077, SP, and CT. In addition to Table 2 in §5.2,
Table 4 also lists the methods that use SynthAdd (SA) [13]
or both synthetic and real data,

SA is a synthetic dataset generated by Li et al. [13]. To
compensate for the lack of special characters, Li ef al. gen-
erated SA using the same synthetic engine with ST [0]. SA
is used in some STR methods [13, 17].

Some methods use both synthetic and real data for train-
ing [13, 35, 40]. Their models trained on both synthetic and
real data show better performance than their models trained
only on synthetic data. However, fairly comparing the three
methods [13, 35, 40] is difficult since they use the different
numbers of real data (50K [13], 16K [35], and 7K [40]). Al-
though they use different real data, we list them in Table 4.

Some methods use character-level labels [14, 39, 35].
ST has character-level labels, and the researchers use them.
The methods using character-level information tend to ob-
tain higher accuracy on irregular texts.

TRBA with our best setting (TRBA-PR) trained on both
synthetic (MJ+ST) and real data has a competitive perfor-
mance of 90.0% to state-of-the-art methods. Adding syn-
thetic data SA for training further improves by 0.3% (from
90.0% to 90.3%).

E.3. Training Only on Real Labeled Data

Accuracy depending on dataset increment: Extended
version Figure 10 shows the accuracy vs. the number of
accumulated real labeled data per dataset increment. This is
the extended version of Figure 1 in §1. Table 5 shows the
accuracy along with the increment of real datasets.

Improvement by simple data augmentations: Varying
degree of each augmentation As we mentioned in §5.3,
the intensity of each augmentation affects the performance.

10nttps://github.com/baidu-research/warp-ctc
https://github.com/clovaai/deep-text-recognition-benchmark/pull/209



Type of training data Dataset name and # of data

Synthetic data Real data mT Svr IC13 IC1S SP CT Total
Method Year MIJ+ST SA labeled unlabeled 3000 647 1015 2077 645 288 7672
ASTER [31] 2018 v 934 895 918 76.1 785 795 | 864
SAR[13] 2019 v v 91,5 845 91.0 692 764 833 | 83.2
SAR[13] 2019 v v v 95.0 912 940 78.8 864 89.6| 89.2
ESIR [42] 2019 v 933 902 913 769 79.6 833 | 86.8
« MaskTextSpotter [14]* 2019 v 953 918 953 782 83.6 885 | 89.1
E ScRN [39]* 2019 v 944 889 939 787 80.8 87.5 | 88.2
£ DAN [36] 2020 v 943 892 939 745 80.0 844 | 86.9
T TextScanner [35]* 2020 v 939 90.1 929 794 843 833 | 883
E TextScanner [35]* 2020 v v 95.7 927 949 835 848 91.6| 91.0
Z SE-ASTER [28] 2020 v 93.8 89.6 928 80.0 814 83.6| 882
& SCATTER [17] 2020 v v 93.7 92,7 939 822 869 87.5 | 89.7
PGT [10] 2020 v v 93,5 90.7 940 746 80.1 77.8 | 86.5
RobustScanner [40] 2020 v 953 881 948 77.1 795 90.3 | 88.2
RobustScanner [40] 2020 v v 954 893 941 792 829 924 | 89.2
PlugNet [24] 2020 v 944 923 950 822 843 85.0| 89.8
TRBA
Original [1] 2019 v 879 875 923 718 792 740 | 828
t  Baseline-synth v 92.1 889 931 747 795 782 | 857
g + SA v v 93.6 88.8 929 764 81.1 84.7 | 87.0
5 Baseline-real v 935 875 926 76.0 787 86.1 | 86.6
% +MIJ + ST v v 95.1 91.0 949 79.0 824 89.1 | 89.1
gt MJ + ST + SA v v v 954 913 952 802 838 92.1 | 89.8
© PR v v 948 913 940 80.6 827 88.1 | 89.3
+MIJ +ST v v v 952 920 947 812 84.6 88.7| 90.0
+MJ + ST + SA v v v v 954 924 950 819 848 89.5 | 903

Table 4: Extended version of Table 2 in §5.2. We show the results reported in original papers. MJ+ST, SA, and “*” denote
union of MJSynth and SynthText, SynthAdd, and the model that uses character-level labeled data, respectively. Real labeled
data has various variants as described in §E.2. In each column, top accuracy is shown in bold.

100
Synthetic data 16M

80 {Synthetic data 16M

60 1

40 1

Accuracy (%)

201 —eo— TRBA
—=— CRNN

SVT +IIT  +IC13  +ICI5 +COCO +RCTW  +Uber  +ArT  +LSVT +MLTI9 +ReCTS
(31)  (2,025) (2,788) (6498)  (46K)  (54K)  (146K) (174K) (208K) (253K) (276K)

Accumulated dataset and (number of accumulated real labeled data)

Figure 10: Accuracy vs. number of accumulated real labeled data, extended version of Figure 1 in §1. Along with the
increment of real data, the accuracy obtained using real data approaches the accuracy obtained using synthetic data.



Dataset CRNN TRBA
SVT® 0.0 0.2
+ IIIT 18.8 13.2

+1C13® 19.0 13.0
+IC15© 23.6 309
+ COCO 47.8 56.6
+ RCTW 56.6 53.0
+ Uber@ 65.1 75.1
+ ArT 70.9 84.3
+LSVT 72.3 85.2
+ MLT19 74.5 86.4
+ReCTS® 748 86.6

Table 5: Accuracy vs. dataset increment. (a), (b), (c), (d),
and (e) denote the results of Year 2011, Year 2013, Year
2015, Year 2017, and Year 2019 in Figure 1 in §1, respec-
tively.

We find the best intensities for each augmentation. Table 6
shows the results of them. We adjust the maximum radius r
of Gaussian blur (Blur), the minimum percentage for crop-
ping (Crop), and the maximum degree ° of rotation (Rot).

We apply the augmentations with an intensity of 1 to
confirm whether applying the weak augmentation will be
effective. In our experiment, the weak augmentations are
effective. 1r of Blur improves the accuracy by 0.8% for
CRNN and 0.1% for TRBA. 99% of Crop improves the
accuracy by 3.0% for CRNN and 0.5% for TRBA. TRBA
performs the best at Crop 99%. 1° of Rot improves the ac-
curacy by 0.3% for CRNN but decreases the accuracy by
0.8% for TRBA.

CRNN shows the best performance 5r of Blur, 90% of
Crop, and 15° of Rot, respectively. They improve the accu-
racy by 0.9%, 4.0%, and 4.7% than that of no augmentation,
respectively. TRBA shows the best performance 5r of Blur
and 99% of Crop, respectively. They improve the accuracy
by 0.2% and 0.5% than that of no augmentation, respec-
tively.

When Rot is applied to TRBA, the accuracy of TRBA
decreases. We presume that Rot can hinder the training of
TPS in TRBA, which normalizes rotated texts into hori-
zontal texts. It can result in the decrease in accuracy. We
conduct additional experiments with the model called RBA,
which is TRBA without TPS. When Rot is applied to RBA,
the accuracy of RBA increases. 30° of Rot improves accu-
racy by 3.1% for RBA. This shows that Rot can improve the
accuracy of STR models but might not be compatible with
TPS.

In §5.3, we use 15° of Rot for TRBA to investigate the
effect of combination of augmentations.

E.4. Semi- and self-supervised framework

Details of semi-supervised learning For Mean Teacher
(MT), we basically follow the code from authors'?>. We do
not use dropout [33] because most STR models do not use
dropout [29, 31, 1]. In our experiments, we use 1.0 for the
coefficient o of MT loss.

Details of self-supervised learning We follow the code
from authors'>:'#. As a default, we use same hyperparame-
ters with their code except for the number of iterations; we
use 200K iterations. We use the same settings for the pre-
text task of RotNet: 1) Batch size 512; 128 x 4 rotations
(0°,90°,180°,270°). 2) SGD optimizer with same setting.
We use the same settings for the pretext task of MoCo: 1)
Batch size 256. 2) SGD optimizer with same setting. 3)
Same augmentation policy: resized crop, gray scale, color
jitter, and horizontal flip.

E.5. Varying Amount of Real Labeled Data

To investigate the effect of the amount of real labeled
data, we vary the ratio of each dataset while maintaining
the diversity of datasets (keep using 11 datasets). Table 7
shows the number of word boxes used in the experiments
varying amount of real labeled data. Table 8 shows the ac-
curacy with varying amount of real labeled data.
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