
What’s in the Image?
Explorable Decoding of Compressed Images

Supplementary Material

Yuval Bahat and Tomer Michaeli
Technion - Israel Institute of Technology, Haifa, Israel
{yuval.bahat@campus,tomer.m@ee}.technion.ac.il

A. Performance Comparison

Our JPEG decoding framework is the first to facilitate
exploration of the abundant plausible images correspond-
ing to a given compressed JPEG code, and therefore cannot
be compared to any existing method. Nonetheless, it pro-
duces high quality outputs even prior to applying any user
editing. To evaluate the quality of pre-edited outputs and
compare it with that of existing JPEG artifact removal meth-
ods, we perform experiments using two datasets commonly
used for evaluating artifact removal, namely the LIVE1 [40]
and BSD-100 [36] datasets, containing 29 and 100 images,
respectively.

Methods for removing JPEG artifacts strive to achieve
one of two possible goals; either they attempt to minimize
outputs’ distortion with respect to corresponding ground
truth (GT) uncompressed images, or they try to maximize
their outputs’ perceptual quality. We quantitatively evalu-
ate the performance with respect to each of these different
goals, by adapting the commonly used metric for each goal:
Distortion is evaluated by measuring peak signal to noise
ratio (PSNR) w.r.t. GT images, while perceptual quality is
evaluated using both the naturalness image quality evaluator
(NIQE, [38]) no-reference score, and the learned perceptual
image patch similarity (LPIPS, [39]) full-reference score.
We compare our method with DnCNN [19] and AGARNet
[21], the only AR methods handling a range of compression
levels (like ours) whose code is available online. As these
methods aim for minimal distortion rather than perceptual
quality, we train a variant of our model using the L1 penalty
instead of the full penalty in (1), which is based on adversar-
ial loss. Our Y channel reconstruction L1 model uses 370
output channels for each convolution operation but the last,
instead of the 320 channels used for our perceptually ori-
ented Y channel model. Like AGARNet, we train this vari-
ant using a wider range of QFs, spanning from 1 to 90. To
allow color image evaluation, we couple our L1 model with
an L1-trained variant of our chroma reconstruction model
as well. We consider our L1-minimized model and our

main model as two different configurations, denoting them
by “Ours, L1” and “Ours, GAN”, respectively. Since the
available pretrained AGARNet model only handles single
channel images (only the Y channel), for evaluating color
images we augment their reconstructed Y channel with the
Cb andCr channels decoded by the standard JPEG pipeline.

Note that our main (GAN) model takes an additional in-
put signal z, facilitating user exploration. However, eval-
uating post-exploration outputs is an ill-defined task that
mostly depends on the user’s intentions. We circumvent
this problem by drawing 50 random z signals per image,
then averaging PSNR, NIQE and LPIPS scores over the re-
sulting 50 outputs per image, over the entire evaluation set.

Quantitative evaluations of both metrics on color and
grayscale images, on both datasets, are presented in Figs. 11
and 12 respectively. We present scores corresponding to
the standard JPEG decompression in all our comparisons,
and for the no-reference NIQE scores present also the val-
ues corresponding to the GT images. The results on color
images (Fig. 11) indicate that our distortion minimizing
model (blue), trained to minimize distortion, compares fa-
vorably both with DnCNN (brown) and with AGARNet (or-
ange) in terms of reconstruction error (bottom row), on both
datasets, especially on severely compressed images (low
QFs). When evaluating on grayscale images (Fig. 12), this
model is on par with the competition. As can be expected,
PSNR scores of our main model (“Ours, GAN”), trained
for perceptual quality, are significantly lower, even slightly
below JPEG image scores.

As for perceptual quality, NIQE scores (where lower
is better) on the top rows suggest that our GAN-trained
model (pink) performs well across all evaluated QFs and
both datasets, obtaining similar scores to those of the GT
images. Evaluating using the full-reference LPIPS score
(middle rows) also indicates high perceptual quality. As
expected, both competing methods and our distortion mini-
mizing model perform significantly worse, as they were all
trained to minimize distortion.

1



0 10 20 30 40 50
QF

4

6

8

10

NI
QE

LIVE1
Ground truth
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

4

6

8

10

12

NI
QE

BSD-100
Ground truth
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

Perceptual quality (no-reference, lower is better)

0 10 20 30 40 50
QF

0.1

0.2

0.3

0.4

LP
IP

S

LIVE1
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

0.1

0.2

0.3

0.4

0.5

LP
IP

S

BSD-100
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

Perceptual quality (full-reference, lower is better)

0 10 20 30 40 50
QF

22.5

25.0

27.5

30.0

32.5

PS
NR

LIVE1

JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

22

24

26

28

30

32

PS
NR

BSD-100

JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

Reconstruction quality (full-reference, higher is better)
Figure 11. Quantitative performance evaluation - color images. Comparing performance on the LIVE1 [40] (left column) and BSD-100
[36] (right column) datasets, in terms of no-reference perceptual quality (top row) and full reference perceptual quality (middle row) and
image distortion (bottom row), using the NIQE (↓), LPIPS (↓) and PSNR (↑) metrics, respectively. Please see details in Sec. A.

Finally, the advantage of our method in terms of percep-
tual quality is evident in a qualitative (visual) comparison,
as presented in Fig. 9 for the case of severely compressed
images (QF=5). This advantage in perceptual quality persist
across different compression levels, as demonstrated using
a more moderate compression level (QF=10) in Fig. 13. We
do not present the corresponding uncompressed GT images
in these figures, since the GT images are as valid a decoding
as any other output of our network, due to its inherent con-
sistency with the input code. For the curious readers how-

ever, we present these corresponding GT images in Fig. 14.

B. Exploration Tools

Our framework’s GUI (depicted in Fig. 15) comprises
many editing and exploration tools that facilitate intricate
editing operations. As we explain in Sec. 5, these tools work
by triggering an optimization process over the space of con-
trol signals z, optimizing one of several possible objective
functions f(·). This is analogous to traversing the manifold

2



0 10 20 30 40 50
QF

4

6

8

10

NI
QE

LIVE1
Ground truth
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

4

6

8

10

12

NI
QE

BSD-100
Ground truth
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

Perceptual quality (no-reference, lower is better)

0 10 20 30 40 50
QF

0.1

0.2

0.3

0.4

LP
IP

S

LIVE1
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

0.1

0.2

0.3

0.4

LP
IP

S

BSD-100
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

Perceptual quality (full-reference, lower is better)

0 10 20 30 40 50
QF

22.5

25.0

27.5

30.0

32.5

PS
NR

LIVE1

JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

22.5

25.0

27.5

30.0

32.5

PS
NR

BSD-100

JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

Reconstruction quality (full-reference, higher is better)
Figure 12. Quantitative performance evaluation - grayscale images. Comparing performance on the LIVE1 [40] (left column) and
BSD-100 [36] (right column) datasets, in terms of no-reference perceptual quality (top row) and full reference perceptual quality (middle
row) and image distortion (bottom row), using the NIQE (↓), LPIPS (↓) and PSNR (↑) metrics, respectively. Please see details in Sec. A.

of perceptually plausible images learned by our network,
while always remaining consistent with the compressed im-
age code. We introduce a novel automatic exploration tool,
allowing users to explore solutions of interest at a press of
a button, as well as some JPEG-specific tools. In addition,
we incorporate most editing tools introduced for explorable
super resolution [7], by adapting them to the JPEG decom-
pression case.

Editing can be applied to the entire image, or to a spe-

cific region marked by the user. Some tools enable more
precise editing, by employing Microsoft-Paint-like buttons,
including pen and straight line (with adjustable line width),
as well as polygon, square and circle drawing tools.

We denote an output image prior to minimizing each ob-
jective f by x̂0 = ψ(xQ, z0), where signal z0 is either a
neutral (pre-editing) control signal or the result of a prior
editing process. Note that any function f(·) computed on
the entire image can alternatively be computed on a specific

3



JPEG DnCNN Ours (min. distortion)AGARNet Ours (perceptual)

Figure 13. Qualitative comparison using QF=10. From left to right: Outputs by the JPEG decompression pipeline, DnCNN [19] AR
method, AGARNet [21] AR method, a variant of our model trained to minimize distortion and our GAN-trained model. Similar to the
results presented in Fig. 9 for the harsher compression level (QF=5), our GAN-trained model (right) produces sharper and more photo-
realistic outputs for the QF=10 case as well, supporting quantitative findings in Figs. 11 and 12, which indicate a significant perceptual
quality advantage across a range of compression levels. Images taken from the BSD-100 [36] test set.

region thereof, by masking out the rest of the image. We
use P (·) to denote a patch extraction operator1, for those

1Objective functions operating on image patches (rather than directly

objective functions below that expect this kind of input. We

on the image itself) use partially overlapping 6× 6 patches. The degree of
overlap varies, and indicated separately for each tool.

4



Figure 14. Ground truth uncompressed images corresponding to images in Figs. 9 and 13.

next describe the different available objective functions and
the way they are utilized in our GUI.

B.1. Variance Manipulation

This is a set of tools which operates by manipulat-
ing the local variance of all partially overlapping image
patches in the selected region. We employ cost function
f(x̂) =

∑
(Var(P (x̂))− Var(P (x̂0))± δ)2, where the sum

runs over all overlapping patches, and optimize over z to
modify (increase or decrease) the local, per-patch variance
by a desired value δ. The effect of applying this tool is
demonstrated in Fig. 16(a) between the left and middle im-
ages.

B.2. Encouraging Piece-wise Smoothness

This tool acts by minimizing the total variations (TV) in
an image or a region: f(x̂) = TV(x̂). In particular, we min-
imize the sum of absolute differences between each pixel in
the image and its 8 neighboring pixels. This function can be
minimized for a single region, or simultaneously minimized
for several marked image areas. The effect of applying this
tool is demonstrated in Fig. 16(a) between the middle and
right images.

Figure 15. Our Exploration GUI. Performing explorable image
decompression of a compressed Mandrill image, using our graph-
ical user interface.

B.3. Imposing Graphical User Input

Our GUI comprises a large set of tools to allow impos-
ing a graphical user input on the output image, by minimiz-
ing f(x̂) = ‖x̂− xscribbled‖1. The desired graphical content
xscribbled is imposed in a consistency preserving manner, by
projecting it onto the set of images that are consistent with
the compressed code xQ. Namely, each block of DCT coef-
ficients Xscribbled

D of the desired input is modified by apply-
ing Eq. (2), repeated here for fluency:

Xscribbled
D ←

(
clip[− 1

2 ,
1
2 ]

(
Xscribbled

D �M −XQ

)
+XQ

)
�M.

(2)
The modifiedXscribbled (depicted, e.g., in the left of the mid-
dle pair of images in Fig. 3) is already consistent with the
compressed input code xQ. The user then has the option
of translating, resizing or rotating the inserted content using
arrow buttons, while consistency is re-enforced automati-
cally after each of these operations. Editing is completed
when the user initiates the optimization process, traversing
the z space looking for the image x̂ that is closest to the de-
sired consistent contentXscribbled, while lying on the learned
manifold of perceptually plausible images.

The desired input xscribbled can originate from any of the
following sources:

1. User scribble: A user can use the Microsoft-Paint-like
drawing tools, where scribbling color can be chosen
manually or sampled from any given image (including
the edited one). Please see Fig. 17 for an example us-
age of this tool.

2. Manipulating HSV: Local hue, saturation and relative
brightness (value) of x̂ can be manipulated by using
one of 6 designated buttons. This results in a de-
sired appearance xscribbled, whose consistency is con-
tinuously enforced after each button press, by com-
puting (2). Brightness manipulation was already fa-
cilitated in [7] for small image details, but larger re-
gions could not be manipulated, as their HSV attributes

5



are strictly determined by the low-resolution input. In
contrast, JPEG compression often discards informa-
tion corresponding to these attributes, thus allowing
and necessitating their exploration.

3. Imprinting: A user can import graphical content, ei-
ther from within the edited image or from an external
one, and then enforce it on x̂. The user first selects the
desired content to import, and then marks the target
region’s bounding rectangle on x̂. JPEG compression
operates on 8× 8 pixel blocks, making it highly sensi-
tive to small image shifts. Therefore, to adapt this tool
from [7], we propose an option to automatically find a
sub-block shifting of the imported content, that yields
the most consistent imprinting. Please see Fig. 3 for an
example usage of this tool.

Subtle region shifting A variant of the imprinting tool
allows applying subtle local affine transformations. It works
by imprinting the region of interest onto itself, then allowing
a user to utilize the shifting, resizing and rotating buttons
to modify the selected region from its original appearance,
before triggering the final z optimization process.

B.4. Desired Dictionary of Patches

This tool manipulates target patches in a desired region
to resemble the patches comprising a desired source region,
either taken from an external image or from a different loca-
tion in the edited image. The latter case is demonstrated in
Fig. 16(b): patches from a small yellow region in the middle
image are propagated to the larger yellow region, resulting
in the right image.

The corresponding cost function penalizes for the dis-
tance between each patch in the target region and its nearest
neighbor in the source region. To allow encouraging desired
textures across regions with different colors, we first remove
mean patch values from each patch, in both source and tar-
get patches. To reduce computational load, we discard some
of the overlapping patches, by using 2 and 4 rows strides in
the source and target regions, respectively. This tool was
used for creating the result in Fig. 8 (right image), by prop-
agating patches depicting sand-waves from the center of the
image to its upper-left regions.

Ignoring patches’ variance A variant of this tool
(demonstrated in left image in Fig. 16(b)) allows encour-
aging desired textures without changing current local vari-
ance. To this end, we normalize patches’ variance, in ad-
dition to removing their mean. Then while optimizing over
z, we add an additional penalty that preserves the original
variance of each target patch, while encouraging its (nor-
malized) signal to resemble that of its closest (normalized)
source patch.

𝜎 𝑇𝑉

Period 

length

M
ag

. M
ag

.

w
/o

 m
ag

.

(a) Variance & TV

(d) Periodicity

(c) Signal Magnitude

(b) Propagating Appearance

w
/ m

ag
.

Figure 16. Exploration tool examples. (a) A pre-edited region
(left) is manipulated to have higher local variance (middle). Then
TV minimization is applied for a smoother result (right). (b)
Source and target regions are marked by the user (middle). Ap-
pearance of patches is then propagated from source to target, while
keeping (right) or ignoring (left) source patches signal magnitude.
(c) A desired region (middle) is manipulated by increasing (right)
or decreasing (left) local signal magnitude. (d) Desired region and
period length are marked by user (left). The effect of periodicity
encouraging tool is visible between middle and right images.

B.5. Signal magnitude manipulation

An additional tool operating on image patches attempts
to amplify or attenuate the magnitude of the signal in exist-
ing patches, while preserving existing patch structures. The
effect of this tool is demonstrated in Fig. 16(c), both for in-
creasing (right) and for decreasing (left) the signal magni-
tude within the region marked on the middle image. Similar

6



to the variance manipulation tool described in Sec. B.1, we
use f(x̂) =

∑
‖P̃ (x̂)− (1± δ)P̃ (x̂0)‖2 as our cost func-

tion, where the sum runs over all overlapping patches. It
penalizes for the difference between the newly constructed
image patches and the (1 ± δ) times magnified/attenuated
versions of the corresponding existing patches, where oper-
ator P̃ (·) extracts image patches and subtracts their respec-
tive mean values. This tool was also utilized for creating the
result in Fig. 8 (right image), by enhancing the sand-wave
appearance of patches propagated to the upper left image
regions.

B.6. Encouraging Periodicity

This tool encourages the periodic nature of an image re-
gion, across one or two directions determined by a user. The
desired period length (in pixels) for each direction can be
manually set by the user, or it can be automatically set to
the most prominent period length, by calculating local im-
age self-correlation. Periodicity is then encouraged by pe-
nalizing for the difference between the image region and its
version translated by a single period length, for each desired
direction. We used this tool too when creating Fig. 8 (right
image), for encouraging the sand-waves to have an approxi-
mately constant period length (in the appropriate direction),
thus yielding a more realistic appearance. The effect of this
tool is also demonstrated in Fig. 16(d), where a desired pe-
riod length and direction are marked by a user on the left
image (yellow curly bracket), as well a region to be manipu-
lated (yellow dashed line). The result after Optimizing over
z (right) is a sharper and cleaner appearance of the stripes
on the manipulated image region.

B.7. Random Diverse Alternatives

This tool allows exploring the image manifold in a ran-
dom manner, producing N different outputs by maximizing
the L1 distance between them in pixel space. These images
(or sub-regions thereof) can then serve as a baseline for fur-
ther editing and exploration.

Constraining distance to current image A variant of
this tool adds the requirement that all N images should be
close to the current x̂0 (in terms of L1 distance in pixel
space).

B.8. Automatic Exploration of Classes

This novel tool allows exploring a predefined set of so-
lutions of interest to a user-marked region at a press of a
button. We exemplify it using the case of the 10 possible
numerical digits d ∈ {0 − 9}. To this end, we use the dth

output of a pre-trained digit classifier as our objective func-
tion, f(·) = Classifierd(·), and produce 10 different outputs
corresponding to the 10 digits, by repeatedly maximizing f
over z using a different d ∈ {0−9} each time. The obtained

Imprinting circles of different sizes:

JPEG

Unedited

Outputs after 𝑧 optimization

Figure 17. The making of Fig. 4. Here, we imprint brown disks
of varying radii on the region of the mole. The top row shows the
projection of the naively imprinted image onto the set of consistent
solutions. The bottom row shows the final output of our method,
after determining the control signal z that causes the net’s output
to resemble the most to the images in the top row.

JPEG
Mole 

almost 

vanishes

QF

5

10

30

Outputs after 𝑧 optimization

Figure 18. Effect of QF on exploration space. The ability to
imprint brown disks of different radii on the mole, strongly de-
pends on the QF. When the QF is small (agressive compression),
the space of consistent solutions is large. In this case, we can im-
print a large mole in one extreme, or completely remove the mole
in the other extreme. However, as the QF increases, the space of
consistent solutions becomes smaller, and the range of mole sizes
that can be imprinted reduces accordingly.

digit-wise optimized outputs are then presented to the user,
who can, e.g., examine their plausibility to assess the likeli-
hood of the underlying visual content corresponding to each
of these digits, as we show in Fig. 2 for the hour digit on the
captured smartphone’s screen. This tool can accommodate
any type of classifier, and can therefore be very useful in
forensic and medical applications (e.g. for predicting ma-
lignant/benign tumors).

C. Editing Processes and Additional Examples
We next exemplify the exploration and editing process,

and illustrate the effect of the quality factor (QF) on the
available degrees of freedom.

Figure 17 shows the exploration process of Fig. 4. Here,
we attempted to imprint brown disks of varying radii on the
unedited image. The top row shows the results of the first
stage of the imprinting process, which projects the image
with the naively placed brown disk onto the set of images
that are consistent with the JPEG code. The second row
shows the results of the second stage of the imprinting pro-
cess, which seeks a control signal z that causes the output
of our decoding network to resemble the image produced in
the first stage. In this example, the second stage is mostly
responsible for smoothing some of the artifacts generated in

7



JPEG

Our explorable decodings

Unedited Adding a fly Adding a worm

Corresponding (full image) control signals 𝑧:

Figure 19. Possible explanations & corresponding z signals. Top row: zoom-in on the JPEG pipeline decoding (left) and three plausible
(and perfectly consistent) alternative decodings by our method (repeated here for fluency from Fig. 7). Bottom row: z signals corresponding
to our alternative decodings (entire image, zoomed region marked in red), displayed by reshaping each 1×1×64 column in the 60×80×64
z signal to an 8 × 8 block in a 480 × 640 grayscale image (values were translated from [−1, 1] to [0, 1] for display purposes). While our
pre-edited output (middle-left) corresponds to a constant z, to obtain the alternative appearances (middle-right and right), our imprinting
tool’s optimization process exploits the model’s receptive field and modifies large regions of z (limited to a rectangular window around the
modified location), keeping non-modified parts of the image unchanged.

JPEG

Our unedited output

Imprinting “1918”

Imprinting “1945”

Figure 20. Which war is over? Using our framework to attempt imprinting years “1918” vs. “1945” yields a significantly better result for
the former, suggesting this compressed archived newspaper dates back to the end of world war I.

the first stage.
Figure 18 illustrates the effect of the QF on the space

of images that are consistent with a given JPEG code. As
can be seen, when using extreme compression with a QF
of 5, we can produce consistent reconstructions with a wide
range of mole sizes, from a very large mole on the left, to
an almost vanished mole on the right. However, as the QF
increases, the set of consistent solutions becomes smaller,
making it impossible to imprint very large or very small
disks.

Control signal z has a non-local effect, due to the recep-
tive field of our model. This is shown in Fig. 19, depicting
different signals z (bottom row) corresponding to different

consistent decodings (top row) of a single compressed im-
age. Finally, we present an additional exploration exam-
ple in Fig. 20, demonstrating a case of exploring corrupted
text.

D. Validating our Alternative Modeling of
Chroma Subsampling

In an effort to produce higher quality reconstruction
of the chroma information, we wish to concatenate the
reconstructed luminance information x̂Y to the input of
our chroma reconstruction model. However, this requires
handling the dimensions inconsistency between the full-

8



resolution luminance channel and the subsampled chroma
channels, which we do through introducing an alternative
modeling of the JPEG chroma subsampling process, as we
explain in Sec. 4.1.

To validate this alternative modeling, we looked at the
differences (calculated after going back to the pixel domain)
between images undergoing the following original vs. alter-
native subsampling processes:

1. “4:2:0” JPEG pipeline: Subsampling chroma chan-
nels by a factor of 2 in both axes→ Computing DCT
coefficients for each 8 × 8 pixels block → Right and
bottom zero-padding each coefficients block to 16×16
→ Returning to pixel domain by computing inverse
DCT for each 16× 16 block.

2. Our alternative pipeline: Computing DCT coefficients
for each 16×16 pixels block→ Setting each block’s 3
lower-right quadrants to 0, leaving unchanged the 8×
8 upper left quadrant coefficients that correspond to
low-frequency content → Returning to pixel domain
by computing inverse DCT for each 16× 16 block.

Note that we did not perform any quantization step in either
of the alternatives, as we were only interested in the isolated
effect of remodeling the subsampling pipeline.

We computed the differences between the two alterna-
tives using the RGB color representation, after concatenat-
ing back the non-altered luminance channel (Y ) in both al-
ternatives. We experimented using 100 images from the
BSD-100 dataset [36], and found that the average root mean
square error (RMSE) was a negligible 0.009137 gray levels
(corresponding to a PSNR of 88.9dB). This certifies our de-
cision to use the alternative modeling, which allows us to
make our chroma reconstruction network aware of the cor-
responding luminance channel, by concatenating it to the
network’s input.

E. Full Training Details
We train our model on 1.15M images from the Ima-

geNet training set [34], using batches of 16 images each.
We use an Adam optimizer, with learning rates of 0.0001
and 0.00001 for the initialization and consecutive training
phases, respectively, and set β1 = 0.9 and β2 = 0.999 for
both generator and critic networks. After ~6 initialization
phase epochs, we set λRange and λMap from Eq. (1) to 200
and 0.1 respectively, and train for additional ~12 epochs,
performing 10 critic iterations for every generator iteration.

For using LMap in the latter phase, we feed each batch
of images twice, differing by the input control signals z ∈
[−1, 1]m×n×64. We first feed a per-channel constant z, uni-
formly sampled from [1,−1], using only LRange and LAdv
in (1). We then perform 10 minimization iterations over
LMap = minz ‖ψ(xQ, z) − x‖1, and feed the same image

batch with the resulting z, this time using the entire cost
function in (1).

To create compressed image input codes, we compress
the GT training images utilizing a quantization interval ma-
trix M = QF ·Qbaseline/5000, where QF is independently
sampled from a uniform distribution over [5, 49] for each
image2, and Qbaseline is the example baseline table in the
JPEG standard [35]. We use N` = 10 layers for both gener-
ator and critic models, where convolution operations utilize
3× 3 spatial kernels with 320 or 160 output channels for all
layers but the last, in the luminance or chroma networks, re-
spectively. We employ a conditional critic, which means we
concatenate the generator’s input xQ to our critic’s input, as
we find it accelerates training convergence.

2We omit the upper QF range of [50, 100] when demonstrating our
approach, as these higher QF values induce lower data loss, leaving less
room for exploration.

9


