
7. Supplementary Material

7.1. Implementation Details of PointDSC

We provide additional information about the implementa-
tion and training details of our PointDSC. The source code
will be made publicly available after the paper gets ac-
cepted.
Post-refinement. Alg. 1 shows the pseudo-code of our
post-refinement step. Inspired by [7], we iteratively alter-
nate between weighing the correspondences and computing
the transformation, to improve the accuracy of the trans-
formation matrices. The inlier threshold τ is set to 10cm
and 60cm for 3DMatch and KITTI, respectively. We set the
maximum iteration number to 20.

Algorithm 1: Post-Refinement Algorithm

Input: R̂, t̂: initial transformation; X,Y
Output: R̂, t̂: refined transformation.
Parameter: τ .
if iter < maxiter then

Compute the residual and the inlier num.
resi = ||R̂xi + t̂− yi||2
wi = #resi < τ

"

num =
$

wi

If inlier num does not change, then stop.
if ∆num = 0 then

break
else

Compute the weighting term.
φi = (1 + (resiτ)2)−1

Estimate transformation.
R̂, t̂ =
argminR,t

$N
i φiwi #Rxi + t− yi#2

iter = iter + 1

else
break

Calculation of M. In Sec. 3.4 of the main text, we calcu-
late the compatibility between correspondences by multi-
plying the spatial consistency term and the feature similar-
ity term mainly because of its simplicity and good perfor-
mance. Other fusion schemes such as the weighted arith-
metic average and weighted geometric average can also be
used to define the compatibility metric. We have explored
several alternatives but found only a marginal performance
difference.
Power iteration algorithm. The power iteration algorithm
can compute the leading eigenvector e of the matrix M in
several iterations. For M ∈ Rk×k, the power iteration op-
erator is

eiter+1 =
Meiter

#Meiter# . (12)

We initialize e0 = 1. By iterating Eq. 12 until convergence,
we get the vector e, whose elements can take real values in
[0, 1]. In practice, we find that the power iteration algorithm
usually converges in fewer than five iterations.
Data augmentation. During training, we apply data aug-
mentation, including adding Gaussian noise with standard
deviation of 0.005, random rotation angle ∈ [0◦, 360◦)
around an arbitrary axis, and random translation ∈
[−0.5m, 0.5m] around each axis.
Hyper-parameters. The hyper-parameter σd controls the
sensitivity to length difference, serving as a pairwise coun-
terpart of the unary inlier threshold τ . The larger σd, the
more length difference between two pairs of correspon-
dences we can accommodate. It is set manually for a spe-
cific scene and kept fixed. Picking a scene-specific value of
σd is easy due to its clear physical meaning. However, σf

controlling the sensitivity to feature difference has no clear
physical meaning. We thus leave σf to be learned by the
network.

7.2. Implementation Detail of Baseline Methods

The baseline methods RANSAC [24] and FGR [82] have
been implemented in Open3D [83]. For GC-RANSAC [5]
and TEASER [71], we use the official implementations.
Note that we use TEASER with reciprocal check; oth-
erwise, it takes an extremely long time for testing when
the number of input correspondences becomes large. For
DGR [16], we use its official implementation and the re-
leased pre-trained model. Due to the unsatisfactory results
of publicly released code, we re-implement SM [38] and
3DRegNet [51], with the implementation details as follows.
Spectral matching. Traditional spectral matching [38] uses
a greedy algorithm based on a one-to-one mapping con-
straint to discretize the leading eigenvector into the in-
lier/outlier labels. However, the greedy algorithm often
does not show satisfactory performance in real cases. For
example, if the input correspondences are pre-filtered by
reciprocal check, the greedy algorithm could not reject any
correspondences since all of them already satisfy the one-
to-one mapping constraint. The Hungarian algorithm [49]
can also be used for discretization but provides results sim-
ilar to the greedy algorithm. In our work, we simply select
10% of the input correspondences with the highest confi-
dence values as the inlier set. This approach empirically
shows to be effective throughout our experiments. Then the
transformation between two point clouds can be estimated
using the selected correspondences.
3DRegNet. We keep the network architecture proposed in
3DRegNet [51] and train it on 3DMatch using the same set-
tings as PointDSC. However, as observed in [16], 3DReg-
Net does not converge during training and the registration
block cannot produce reasonable results. We speculate that
directly regressing the pose results in the poor performance

1

due to the non-linearity of the rotation space [53, 30]. Thus
we regard the output of the classification block as the in-
lier confidence and use the confidence as the weight for
weighted least-squares fitting. We then train the network
using the classification loss only, since we find the regis-
tration loss does not improve the performance. The modi-
fied 3DRegNet becomes a 3D variant of PointCN [48] and
achieves reasonable results.

7.3. Time Complexity Analysis

We report the average runtime of each component in
the proposed pipeline on the 3DMatch test set (roughly
5k putative correspondence per fragment) in Table 6.
The reported times are measured using an Intel Xeon 8-
core 2.1GHz CPU (E5-2620) and an NVIDIA GTX1080Ti
GPU.

SCNonlocal Seed Selection NSM Post Refine Overall
62.0 2.0 14.4 11.1 89.5

Table 6: Runtime of each component in milli-seconds, av-
eraged over 1,623 test pairs of 3DMatch. The time of hy-
pothesis selection is included in the NSM module.

7.4. Additional Statistics

We report the area under cumulative error curve (AUC)
of the rotation and translation errors defined in Eq. 11 at
different thresholds, as shown in Table 7. PointDSC consis-
tently outperforms the state-of-the-arts on both the AUC of
the Rotation Error (RE) and Translation Error (TE).

RE AUC TE AUC
5◦ 10◦ 15◦ 5cm 10cm 15cm 20cm 25cm 30cm

SM 50.14 67.24 74.37 16.29 35.98 48.61 56.90 62.57 66.67
DGR 50.22 69.98 77.78 14.13 35.28 49.32 58.50 64.74 69.19
RANSAC 49.99 70.43 78.31 12.16 33.15 47.99 57.81 64.33 68.95
GC-RANSAC 52.81 71.56 78.90 15.33 36.77 50.94 59.95 65.94 70.19
PointDSC 57.32 74.85 81.50 17.85 40.63 54.56 63.32 69.02 73.00

Table 7: Registration results on 3DMatch. We calculate the
exact AUC following [62]: the higher, the better. We run
100k iterations for both RANSAC and GC-RANSAC.

We also report the scene-wise registration results of our
method on 3DMatch in Table 8.

RR(%) RE(°) TE(cm) IP(%) IR(%) F1(%)
Kitchen 98.81 1.67 5.12 80.57 88.83 84.26
Home1 97.44 1.87 6.45 83.34 88.91 85.88
Home2 82.21 3.36 7.46 71.39 80.20 74.78
Hotel1 98.67 1.88 6.04 83.96 91.48 87.38
Hotel2 92.31 1.98 5.74 81.07 86.97 83.82
Hotel3 92.59 2.00 5.87 82.65 88.57 85.03
Study 89.04 2.29 9.20 77.00 83.72 79.97
Lab 80.52 1.91 8.41 70.31 77.88 73.46

Table 8: Scene-wise statistics for PointDSC on 3DMatch.

7.5. Additional Experiments

Registration results on KITTI. Due to the space limita-
tion and the saturated performance under the FCGF setting,
we only report the registration results on KITTI under the
FPFH setting in the main text. Here we report the perfor-
mance of all the methods combined with FCGF in Table 9.
For the learning-based models DGR and PointSM, we re-
port the performance of the models trained from scratch (la-
belled “re-trained”) and pre-trained on the indoor dataset
3DMatch (no extra label) with the FCGF descriptor.

RR(↑) RE(↓) TE(↓) F1(↑) Time
SM 96.76 0.50 19.73 22.84 0.10
RANSAC-1k 97.12 0.48 23.37 84.26 0.22
RANSAC-10k 98.02 0.41 22.94 85.05 1.43
RANSAC-100k 98.38 0.38 22.60 85.42 13.4
DGR 95.14 0.43 23.28 73.60 0.86
PointDSC 97.84 0.33 20.99 85.29 0.31
DGR re-trained 96.90 0.33 21.29 73.56 0.86
PointDSC re-trained 98.20 0.33 20.94 85.37 0.31

Table 9: Registration results on KITTI under the FCGF set-
ting. The reported time numbers do not include the con-
struction of initial correspondences.

Under low-overlapping cases. Recently, Huang et. al [32]
have constructed a low-overlapping dataset 3DLoMatch
from the 3DMatch benchmark to evaluate the point cloud
registration algorithms under low-overlapping scenarios. To
demonstrate the robustness of our PointDSC, we further
evaluate our method on the 3DLoMatch dataset and re-
port the results1 in Table 10. Note that we directly use
the model trained on 3DMatch without fine-tuning and keep
5cm voxel for the FCGF descriptor. All the other settings
are the same as [32] for a fair comparison.

5000 2500 1000 500 250 ∆
FCGF[18] + RANSAC 35.7 34.9 33.4 31.3 24.4 -
FCGF[18] + PointDSC 52.0 51.0 45.2 37.7 27.5 +10.74
Predator[32] + RANSAC 54.2 55.8 56.7 56.1 50.7 -
Predator[32] + PointDSC 61.5 60.2 58.5 55.4 50.4 +2.50

Table 10: Registration recall on the 3DLoMatch dataset us-
ing different numbers of points to construct the input cor-
respondence set. The last column is the average increase
brought by PointDSC.

As shown in Table 10, our method consistently outper-
forms RANSAC when combined with different descriptors.
Moreover, our method can further boost the performance of
Predator [32], a recently proposed learning-based descrip-
tors especially designed for low-overlapping registration,
showing the effectiveness and robustness of our method un-
der high outlier ratios. PointDSC increases the registration
recall by 16.3% and 7.3% under 5000 points setting for
FCGF and Predator, respectively. Note that PointDSC does

1The computation of registration recall is slightly different with ours,
we refer readers to [32] for more details.

2

not bring much performance gain when only a small number
of points (e.g. less than 500) are used to construct the input
correspondences mainly because some of the point cloud
pairs have too few (e.g. less than 3) correspondences to
identify a unique registration.
Prioritized RANSAC. Despite the common usage of the
inlier probability predicted by networks in weighted least-
squares fitting [16, 27], little attention has been drawn to
leverage the predicted probability in a RANSAC frame-
work. In this experiment, we derive a strong RANSAC
variant (denoted as Prioritized) by using the inlier proba-
bility for selecting seeds to bias the sampling distribution.
For a fair comparison, we implement Prioritized using the
same codebase (Open3D) as RANSAC. As shown in Ta-
ble 11, Prioritized outperforms classic RANSAC by more
than 30% in terms of registration recall, indicating that the
inlier probability predicted by our method is meaningful
and accurate, and thus could help RANSAC to sample all-
inlier subsets earlier and to achieve better performance in
fewer iterations. This RANSAC variant can also be used
for each correspondence subset to replace the weighted LS
in Eq. 5, denoted as Local Prioritized in Table 11. Still,
PointDSC outperforms the strong baselines with better ac-
curacy and faster speed.

RR(%) RE(°) TE(cm) F1(%) Time(s)
RANSAC-1k 40.05 5.16 13.65 39.23 0.08
Prioritized-1k 74.31 2.83 8.26 67.58 0.13
Local Prioritized 78.00 2.08 6.42 69.44 0.24
PointDSC 78.50 2.07 6.57 69.85 0.09

Table 11: Results on 3DMatch test set using FPFH.

Ablation on loss function. The Lsm is proposed to provide
additional supervision, i.e., the pairwise relations between
correspondences, serving as a complement to the node-wise
supervision. The edge-wise supervision encourages the in-
liers to be concentrated in the embedding space, and this is
the key assumption of our NSM module. To demonstrate
its effectiveness, we compare the model trained with Eq. 10
and the model trained without the proposed spectral match-
ing loss Lsm (Eq. 9) in Table 5. As shown in Table 12, Lsm

improves the registration recall by 0.67% over the strong
baseline.

RR(↑) RE(↓) TE(↓) F1(↑) Time
PointDSC 93.28 2.06 6.55 82.35 0.09
w/o Lsm 92.61 2.07 6.75 81.58 0.09

Table 12: Ablation experiments of NSM module.

Effect of neighborhood size k. The size of correspondence
subset, k, (Sec. 3.4) is a key parameter of our proposed
method, and controls the size of each correspondence subset
for neural spectral matching. We test the performance of our
method with k being 10, 20, 30, 40, 50, 60, 100, and 200,
respectively. As shown in Table 13, the results show that our
method is robust to the choice of k. We ascribe the robust-

ness to the neural spectral matching module, which effec-
tively prunes the potential outliers in the retrieved subsets,
thus producing a correct model even when starting from a
not-all-inlier sample. We finally choose k = 40 for its best
Registration Recall and modest computation cost.

RR(↑) RE(↓) TE(↓) IP(↑) IR(↑) F1(↑)
10 92.73 2.04 6.44 79.01 85.51 81.87
20 92.79 2.04 6.50 78.88 85.86 81.96
30 93.10 2.04 6.50 79.07 86.35 82.25
40 93.28 2.06 6.55 79.10 86.54 82.35
50 93.10 2.05 6.54 79.10 86.47 82.34
60 92.91 2.04 6.51 79.14 86.61 82.42
100 92.91 2.04 6.53 78.87 86.25 82.12
200 92.79 2.04 6.51 78.96 86.37 82.22

Table 13: Performance of our PointDSC when varying the
size of correspondence subsets in the NSM module.

Joint training with descriptor and detector. In this part,
we explore the potential of jointly optimizing the local fea-
ture learning and outlier rejection stages. A recently pro-
posed method D3Feat [4], which efficiently performs dense
feature detection and description by a single network, best
suits our need. By back-propagating gradients to the in-
put descriptors, the detector network can also be updated.
Thus we build an end-to-end registration pipeline by tak-
ing the output of D3Feat as the input to our outlier rejec-
tion algorithm. We establish the correspondences using soft
nearest neighbor search proposed in [27] to make the whole
pipeline differentiable. We first train the feature network
and the outlier rejection network separately, and then fine-
tune them together using the losses in [4] and Eq. 10.

However, we did not observe performance improvement
for the feature network in this preliminary joint training ex-
periment. We suspect that the current losses are unable to
provide meaningful gradients to the feature network. We
believe that it is an interesting future direction to design
proper loss formulations for end-to-end learning of both
feature and outlier rejection networks.

Nevertheless, it is noteworthy that within a reasonable
range, D3Feat + PointDSC achieves improved results when
using fewer but more confident keypoints to build the input
putative correspondences for outlier rejection. We ascribe
the performance improvement to the elimination of key-
points in non-salient regions like smooth surface regions,
reducing the failure registration caused by large symmet-
ric objects in the scene. (See the visualization of failure
cases Fig. 11 for more detail.) The results of D3Feat +
PointDSC under different numbers of keypoints (labelled
by Joint(#num)) are provided in Table 14 for comparisons.

7.6. Derivation of Eq. 5

For completeness, we summarize the closed-form so-
lution of the weighted least-squares pairwise registration

3

RR(↑) RE(↓) TE(↓) IP(↑) IR(↑) F1(↑)
PointDSC 93.28 2.06 6.55 79.10 86.54 82.35
Joint (5000) 92.42 1.83 5.87 79.02 85.14 81.72
Joint (4000) 92.67 1.86 5.88 79.67 85.54 82.26
Joint (3000) 93.35 1.85 5.92 80.78 86.26 83.19
Joint (2500) 93.59 1.86 6.00 81.05 86.40 83.38
Joint (2000) 93.53 1.85 6.02 81.14 86.11 83.30
Joint (1000) 90.82 1.96 6.38 78.75 83.41 80.64

Table 14: Registration results of joint training with descrip-
tor and detector on 3DMatch.

problem [8],

R̂, t̂ = argmin
R,t

N!

i

ei #Rxi + t− yi#2 , (13)

where (xi, yi) is a pair of corresponding points, with xi

and yi being from point clouds X ∈ RN×3 and Y ∈ RN×3,
respectively. Let x̄ and ȳ denote the weighted centroids of
X and Y, respectively:

x̄ =

$N
i eixi$N
i ei

, ȳ =

$N
i eiyi$N
i ei

. (14)

We first convert the original coordinates to the centered co-
ordinates by subtracting the corresponding centroids,

x̃i = xi − x̄, ỹi = yi − ȳ, i = 1, ..., N. (15)

The next step involves the calculation of the weighted co-
variance matrix H,

H = X̃TEỸ, (16)

where X̃ and Ỹ are the matrix forms of the centered co-
ordinates and E = diag(e1, e2, ..., eN). Then the rotation
matrix from X to Y can be found by singular value decom-
position (SVD),

[U,S,V] = SVD(H), (17)

R̂ = V

%

&
1 0 0
0 1 0
0 0 det(VUT)

'

(UT, (18)

where det(·) denotes the determinant, which is used to avoid
the reflection cases. Finally, the translation between the two
point clouds is computed as,

t̂ = ȳ − R̂x̄. (19)

7.7. Qualitative Results

We show the outlier rejection results on 3DMatch and
KITTI in Fig. 9 and Fig. 10, respectively. For the KITTI
dataset, we use the FPFH descriptor to better demonstrate

the superiority of our method. RANSAC suffers from sig-
nificant performance degradation because the FPFH de-
scriptor results in large outlier ratios, where it is harder to
sample an outlier-free set. In contrast, our PointDSC still
gives satisfactory results.

We also provide the visualization of failure cases of our
method on 3DMatch in Fig. 11. One common failure case
happens when there are large symmetry objects (e.g., the
wall, floor) in a scene, resulting in rotation errors around
90°or 180°. In this case, the clusters formed by outlier cor-
respondences could become dominant, leading to incorrect
transformation hypotheses. Then an incorrect transforma-
tion is probably selected as the final solution since a large
number of outlier correspondences would satisfy this trans-
formation. To highlight this issue, we draw the distribution
of rotation errors of unsuccessful registration pairs on the
3DMatch test set in Fig. 8, from which we can find that a
large portion of pairs has around 90°and 180°.

Figure 8: Rotation errors of unsuccessful registration pairs
of PointDSC on the 3DMatch test set.

4

Figure 9: Visualization of outlier rejection results on the 3DMatch dataset. From left to right: input correspondences con-
structed by FCGF, results of RANSAC-100k, and results of PointDSC. Best viewed with color and zoom-in.

5

Figure 10: Visualization of outlier rejection results on the KITTI dataset. From left to right: input correspondences con-
structed by FPFH (we choose FPFH to better demonstrate the robustness of our method to high outlier ratios), results of
RANSAC-100k, and results of PointDSC. Best viewed with color and zoom-in.

Figure 11: Two representative failure examples of our method on 3DMatch. In each example, ground-truth registration (Left)
and estimated registration (Right). We observe that our method fails mainly due to the symmetries in the scene.

6

