Supplementary Material:
Unsupervised Pointcloud Registration via Differentiable Rendering

Mohamed El Banani

Luya Gao

Justin Johnson

University of Michigan

{mbanani, mlgao,

A. Feature Encoder

We only have one learned component in our model, the
feature encoder, which is implemented using the ResNet ba-
sic block defined in the t orchvision library. Our feature
encoder takes as input an RGB image. The first layer is a
2D convolution layer with a kernel size of 3 and and output
channel dimension of 64. This is followed by two ResNet
basic blocks that retain the spatial and feature dimensions
of the activations. Finally, we use a 2D convolution layer
to map the feature dimension from 64 to 32. We reduce the
feature dimension to 32 as it allows us to use the fast kNN
CUDA kernel defined in PyTorch3D [1]. All convolution
layers are followed by BatchNorm and ReLU activation, ex-
cept for the last layer.

B. Alignment Algorithms

During training, we use the Weighted Procrustes algo-
rithm for point cloud registration since it allows us to main-
tain the differentiability of the pipeline. However, once the
model is trained, we can use our pretrained features with
other alignment methods such as RANSAC. Furthermore,
we could use the Weighted Procrustes algorithm with other
feature descriptors to better understand our model’s perfor-
mance. Hence, we evaluate the pairwise registration perfor-
mance for different pairs of feature descriptors and align-
ment algorithms.

Given that the choice of correspondence set can be criti-
cal to the performance of an alignment algorithm, we com-
pare two variants of RANSAC. In the first variant, we
compute a large set of correspondences by simply finding
the nearest neighbor to each feature. The second variant,
RANSAC-Corr, filters the correspondences using Lowe’s
ratio test and only keeps the top 400. This is similar to our
method and allows us to disentangle the impact of using
Lowe’s ratio to only filter the correspondences as opposed
to using it to both filter and weigh the correspondence, as
done by the Weighted Procrustes algorithm. For both vari-
ants, we use the implementation provided by Open3D with
a limit of 100,000 iterations for RANSAC.

justincj}@umich.edu

‘ Rotation Translation = Chamfer
Features Estimator ‘Mean Med. Mean Med. Mean Med.
SIFT RANSAC 254 54 338 125 543 25
SuperPoint RANSAC 13.1 40 209 106 300 14
FCGF RANSAC 109 49 203 11.8 159 22
Ours RANSAC 106 46 199 11.0 99 1.6
SIFT RANSAC-Corr| 18.6 43 265 112 426 1.7

SuperPoint RANSAC-Corr| 89 36 161 97 192 12
FCGF RANSAC-Corr| 9.5 33 236 83 244 09

Ours RANSAC-Corr| 35 18 85 56 44 05
SIFT Ours 145 20 265 57 208 05
SuperPoint Ours 48 16 85 41 74 03
FCGF Ours 153 43 348 11.6 289 20
Ours Ours 34 08 73 23 59 0.1

Table 1. Impact of feature and alignment algorithm on Pair-
wise Registration. Using Lowe’s Ratio test to filter correspon-
dences improves performance as expected, while using it to further
weight the correspondences in the Weighted Procrustes algorithm
further improves performance. Furthermore, our features outper-
form the baselines regardless of choice of alignment algorithm.

We present the results in Table 1. We first observe that
filtering the correspondences improves the performance of
all feature descriptors as shown by the improved perfor-
mance of RANSAC-Corr and Weighted Procrustes. We
note that some of those differences would decrease by al-
lowing RANSAC to run for a longer number of iterations.
However, even with 100,000 iterations, we find the infer-
ence with RANSAC can be up to 10x slower than using
Weighted Procrustes. Intuitively, filtering correspondences
should improve the performance since it makes it easier for
RANSAC to find the best alignment by decreasing the num-
ber of outliers. This is especially true for methods that out-
put a large number of feature descriptors like FCGF and our
method. Finally, we observe that using Weighted Procrustes
further improves the performance for all visual features.

C. Qualitative Results

We include additional qualitative results in the appendix
to provide a clear picture of our model’s estimates as well

as its limitations. First, we show the additional registration
results in Figure C.1. Our model can extract dense corre-
spondences between images, allowing it to accurately esti-
mate the camera motion in the scene and register the im-
ages. Similar to registration methods, our approach strug-
gles when there is limited visual and geometric texture in
the image. This results in the failure mode shown in the
bottom row of Figure C.1. However, as shown in the sec-
ond to last row, the dense correspondences can still help it
identify the correct correspondences.

Second, we also show the RGB-D renderings produced
by the model in Figure C.2. As can be seen, our model’s re-
construction from the rendered features closely matches the
appearance of the input images. Furthermore, as discussed
in Section 3.4, our model only renders the overlapping sec-
tions of the scene, resulting in the sections of the image not
being rendered. As presented in the image, our image pairs
do not have significant overlap, demonstrating our model’s
ability to perform wide-baseline correspondence matching
and point cloud registration.

References

[1] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv, 2020.

Input Images Extracted Correspondences Estimated Alignment

Figure C.1. Pairwise Registration Results. Our model can extract dense correspondences across different scenes. Our model is also
capable of accurately registering the scene despite the existence of outliers. Finally, while our model struggles with finding correspondences
in limited visual texture, it can still accurately register the scene in some cases. In more difficult cases, the estimated correspondence weights
are much lower, as indicated by the orange color.

Input RGB Rendered RGB Input Depth Rendered Depth

Figure C.2. RGB-D Rendering Results. Our model accurately aligns and renders the scene. While missing depth pixels in the input
are due to sensor issue, missing pixels in our renders can be due to non-mutually visible surfaces either due to change in camera view,
occlusion, or missing depth.

