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In the following, we provide detailed results for the ex-
periments on ModelNet40 and ScanObjectNN in Section 1.
We show the application of our approach to the object pose
estimation task on the LINEMOD dataset in Section 2. In
addition, a detailed view on the architecture and definitions
of the used metrics are given in Sections 3 and 4.

1. Details of Experiments
This section provides a more detailed analysis of the

main results. For all methods, we use the same settings and
models as in Section 4 of the main text.

1.1. ADI Precision-Recall Curves

Figure 1 shows the underlying precision-recall curves
that were used to compute the ADI AUC metric for the held-
out ModelNet40 models in Table 1 (left) in the main text.

As shown in the zoom-ins on the threshold range [0, 1],
both classical approaches achieve highest recall for very low
ADI precision thresholds. The prediction of the learning-
based approaches seems to always introduce a slight mis-
alignment. Moreoever, FGR performs best overall on
ScanObjectNN, while ICP never achieves 100% recall.

The relative deterioration over datasets of PointNetLK
is similar to our approach, presumably stemming from the
similar embedding. DCP-v2 generally performs worst of
the learning-based approaches, which, we assume, is due
to imperfect correspondences in all settings. Overall, we
observe that DCP-v2 is able to achieve similar top recall,
but is weaker on tight precision thresholds. We hypothesize
that this is due to the one-shot nature of DCP-v2, whereas
the iterative approaches may further refine their predictions.

Both ReAgent versions outperform the compared
learning-based methods in all conditions. Above about
0.6%d, ReAgent performs best on synthetic data. ReAgent
(IL+RL) outperforms the IL-only variant on held-out mod-
els above about 1%d. The farther the dataset deviates from
the training conditions, the more ReAgent’s (IL+RL) per-
formance deteriorates as compared to ReAgent (IL).

1.2. Transformation and Noise Magnitude

The magnitude of the initial transformations and the
noise in Section 4 of the main text are in-line with previ-
ous work [8, 10]. To show how the compared methods are
affected by varying noise and initial conditions, we provide
an ablation study in Figure 2. We evaluate using the held-
out ModelNet40 models as in Table 1 (left) in the main text.

Noise Magnitude: In Figure 2a, the standard deviation
of the distribution from which the noise is sampled is varied.
The mean of the distribution remains constant at 0 and clip-
ping remains constant at 0.1; increased from 0.05 as com-
pared to the main experiments.

FGR performs best in the noise-free condition but is
heavily affected by increasing noise magnitude. Comparing
the trend of the mean values, the other methods are similarly
affected with ReAgent retaining overall best performance
over all magnitudes.

Initial Transformation: In Figures 2b-c, the respective
component of the transformation is varied, while the other
is kept as in the experiments in the main text. The magni-
tude of the transformation is varied by increasing the upper-
bound parameter of the transformation distributions.

Figure 2b indicates that the PointNet-based methods are
able to retain high accuracy within the range of initial ro-
tations seen during training (up to 45 deg per axis). FGR,
using the true surface normals of the models, is barely af-
fected by increasing rotation magnitude.

In Figure 2c, the performance of ICP is heavily affected
by the translation magnitude. This is due to a fixed upper-
bound for the correspondence distance of 0.5. ReAgent also
shows a slight decrease in accuracy with the highest trans-
lation magnitude, as its step sizes are limited and thus more
iterations need to be spent for initial alignment.

1.3. Step-by-Step Results

Table 1 shows the results of ReAgent (IL+RL) after each
iteration. Tc indicates cumulative runtime for inference us-
ing a single observation. The conditions are identical to
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(a) Held-out ModelNet40 models.
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(b) Held-out ModelNet40 categories.
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(c) ScanObjectNN.

Figure 1: Precision-recall curves for the ADI AUC results in Section 4 of the main text. Best viewed digitally.
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Figure 2: Results on held-out ModelNet40 models with varying noise. The boxes show [q.25,q.75] and the median value.
The whiskers indicate [q.25 − 1.5IQR,q.75 + 1.5IQR], with IQR = q.75 − q.25. The colored lines show the trend of the
respective mean values. Note that large differences between mean and median are due to outliers.

iter. MAE (↓) ISO (↓) ADI (↑) C̃D (↓) Tc
R t R t AUC ×1e−3 [ms]

init 22.35 0.238 44.49 0.478 3.4 225.6335 0
1 12.74 0.101 25.34 0.204 39.0 45.5217 3
2 6.31 0.050 12.17 0.100 69.9 10.7966 5

ICP 3.59 0.028 7.81 0.063 90.6 3.4882 9
3 3.32 0.025 6.46 0.052 83.7 2.9290 7
4 2.02 0.015 3.98 0.032 89.7 1.3366 9

PNLK 1.64 0.012 3.33 0.026 93.0 1.0305 45
5 1.50 0.011 2.97 0.024 92.8 0.9018 11
6 1.33 0.010 2.66 0.022 94.0 0.7814 13
7 1.33 0.010 2.64 0.022 94.3 0.7592 15
8 1.36 0.010 2.69 0.022 94.4 0.7528 17
9 1.40 0.010 2.76 0.023 94.7 0.7498 19
10 1.47 0.011 2.87 0.023 94.4 0.7499 21

Table 1: Results per iteration for ReAgent (IL+RL) on held-
out ModelNet40 models. See Table 1 (left) in the main text.

those in Table 1 (left) in the main text, using held-out Mod-
elNet40 models. The step-by-step results show that the ex-
ponential scale allows to pick large step sizes to achieve
a rough alignment initially. Within about 3 steps, our ap-
proach achieves an accuracy similar to ICP in less time.
Smaller step sizes are used subsequently and the perfor-
mance of, for example, PointNetLK is reached after about
5 steps and 11ms of runtime. We observe that, for the
last steps, ReAgent further refines the Chamfer distance by
aligning closer to an indistinguishable pose – the error with

respect to the true pose (indicated by MAE and ISO) in-
creases slightly, while C̃D reduces. If accuracy with re-
spect to the true rotation and translation is preferred over
the symmetry-aware metrics, the number of iterations and
thereby the runtime could be further reduced. For consis-
tency across experiments, however, we report the results af-
ter 10 iterations in the main results.

Qualitative step-by-step examples are given in Figure 3.
ReAgent quickly achieves a rough alignment within about 3
steps, which is then further refined using smaller step sizes.

2. Application: Object Pose Estimation

In object pose estimation, the task equivalent to point
cloud registration is referred to as object pose refinement.
Refinement is a step to significantly increase accuracy, start-
ing from an initial pose provided by an object pose esti-
mator. By evaluation on the LINEMOD dataset [2], com-
monly used in this domain, the performance of the pre-
sented approach in this real-world scenario is highlighted.
LINEMOD consists of 15 objects of which 13 are used for
evaluation. Two of those are considered symmetric for eval-
uation (in italics in Table 2).

The training phase is slightly modified on LINEMOD.
Instead of using a pre-training phase, we directly use the
combined approach with a learning rate of 1e−3, halving it
every 20 epochs for a total of 100 epochs. The influence of
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Figure 3: Qualitative examples. Stepwise results of ReAgent (IL+RL) on held-out ModelNet40 models. Target (gray), initial
(magenta) and current source point clouds (cyan). Best viewed digitally.

RGBD-based RGB-based depth-based︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
class DenseFusion DenseFusion ref. DPOD DeepIM DPOD ref. PoseCNN PFRL DeepIM ICP-based ours IL ours IL+RL
ape 79.5 92.3 53.3 78.7 87.7 27.8 60.5 77.0 79.1 97.2 96.9
vise 84.2 93.2 95.3 98.4 98.5 68.9 88.9 97.5 97.9 99.6 99.6
cam 76.5 94.4 90.4 97.8 96.1 47.5 64.6 93.5 93.5 99.0 99.3
can 86.6 93.1 94.1 97.6 99.7 71.4 91.3 96.5 98.7 99.6 99.5
cat 88.8 96.5 60.4 85.2 94.7 56.7 82.9 82.1 96.0 99.8 99.7
driller 77.7 87.0 97.7 91.6 98.8 65.4 92.0 95.0 84.2 98.8 99.0
duck 76.3 92.3 66.0 80.2 86.3 42.8 55.2 77.7 84.1 96.9 96.6
eggbox 99.9 99.8 99.7 99.7 99.9 98.3 99.4 97.1 98.4 99.8 99.9
glue 99.4 100.0 93.8 99.5 96.8 95.6 93.3 99.4 99.1 99.2 99.4
puncher 79.0 92.1 65.8 75.7 86.9 50.9 66.7 52.8 97.2 98.4 98.6
iron 92.1 97.0 99.8 99.7 100.0 65.6 75.8 98.3 90.6 97.9 97.5
lamp 92.3 95.3 88.1 98.2 96.8 70.3 96.6 97.5 94.0 99.8 99.7
phone 88.0 92.8 74.2 91.4 94.7 54.6 69.1 87.7 85.8 97.7 97.8
mean 86.2 94.3 83.0 91.8 95.1 62.8 79.7 88.6 92.1 98.7 98.7

Table 2: Results on LINEMOD for AD < 0.1d, initialized by DenseFusion (left), DPOD (mid) and PoseCNN (right).

the PPO loss term is reduced to α = 0.1. Separate results
for training using only IL are provided for comparison.

Baselines: We compare our method to the reported per-
formances of RGBD (DenseFusion [8]), RGB-only (DPOD
[11], DeepIM [3], PFRL [5]) and depth-only (the ICP-based
method used in [9]) object pose refinement approaches. In
each block in Table 2, the left-most column indicates the
results of the method used for initialization (gray back-
ground). With our approach, we use the results provided for
PoseCNN [9]. As in related work [5, 3], we utilize the seg-
mentation masks provided together with the initial poses.

Metrics: Hinterstoisser et al. [2] propose two widely
used evaluation metrics for object pose estimation. The Av-
erage Distance of Model Points (ADD) measures the dis-
tance between corresponding points under estimated and
ground truth pose. To deal with symmetric objects, the

ADD with Indistinguishable Views (ADI) metric instead
considers the distance between closest points. We indicate
the mixed use of ADD and ADI by abbreviating with AD.
The reported recall values are computed at precision thresh-
olds of 10, 5 and 2% of the object diameter. Please see Sec-
tion 4 for a formal definition of the metrics.

Results: For training, we use the split defined in related
work [1, 4, 6] and sample point clouds of size 1024 per
training image as source. The sampling selects a random
point on the object and finds its nearest neighbors in image
space. p% of the points are sampled from the object (based
on the ground-truth mask) and 100 − p% are sampled from
the surrounding background, where p is uniformly random
in [50, 100%]. Thereby, we simulate partial observation of
the object and imprecise segmentation. As target, we uni-
formly random sample 1024 points from the correspond-
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Figure 4: Qualitative examples on LINEMOD using ReAgent (IL+RL). As shown in the top row, 1024 points are sampled
within the estimated segmentation mask. The black box indicates the zoomed-in view. Outlines for target (gray), initial
(magenta) and current source pose (cyan) are shown. The last column shows a failure case. Best viewed digitally.

class PoseCNN DeepIM ICP-based ours IL ours IL+RL
ape 5.2 48.6 38.0 70.6 71.7
vise 27.3 80.5 81.9 95.3 96.0
cam 12.5 74.0 56.1 87.7 89.6
can 26.2 84.3 81.2 95.7 95.8
cat 22.6 50.4 81.9 95.2 95.6
driller 23.7 79.2 59.3 97.1 97.9
duck 9.9 48.3 50.0 65.0 69.4
eggbox 73.9 77.8 93.1 99.1 98.9
glue 66.5 95.4 90.1 98.7 98.3
puncher 13.0 27.3 64.7 91.3 90.1
iron 23.2 86.3 60.9 92.3 91.5
lamp 29.6 86.8 85.9 98.8 98.9
phone 16.2 60.6 48.4 90.9 90.9
mean 26.9 69.2 68.6 90.6 91.1

Table 3: Per-class results on LINEMOD for AD < 0.05d,
initialized using PoseCNN.

ing object model. The target point cloud is normalized to
be mean centered and the farthest point to be of distance
1. The same translation and scaling is applied to the source
under ground-truth pose. As such, the distance from the ori-
gin provides an inductive bias on whether an (aligned) point
belongs to the model or the background. Finally, we apply

class PoseCNN DeepIM ICP-based ours IL ours IL+RL
ape 0.0 14.3 2.9 7.5 9.0
vise 1.6 37.5 25.8 38.5 39.9
cam 0.5 30.9 4.2 17.8 24.8
can 1.0 41.4 10.6 39.7 41.3
cat 1.0 17.6 18.6 41.6 39.5
driller 1.6 35.7 5.8 46.5 49.7
duck 0.3 10.5 3.5 6.8 6.9
eggbox 17.9 34.7 73.3 72.4 73.2
glue 15.4 57.3 41.9 76.4 74.1
puncher 0.5 5.3 6.8 31.2 29.5
iron 0.7 47.9 5.0 34.2 34.9
lamp 1.6 45.3 44.0 67.8 66.9
phone 0.8 22.7 4.5 24.6 25.7
mean 3.3 30.9 19.0 38.8 39.6

Table 4: Per-class results on LINEMOD for AD < 0.02d,
initialized using PoseCNN.

an uniformly random initialization error to the source, with
the translation magnitude sampled from [0, 1] and the rota-
tion magnitude sampled from [0, 90]deg. During testing, we
uniformly random sample 1024 points within the estimated
segmentation mask and initialize the source using the esti-
mated pose, both provided by the PoseCNN results [9].



As shown in Table 2, our approach outperforms all com-
pared methods with respect to the mean AD and on most
per-class results. Note that while it is more difficult for RGB
methods to estimate an accurate z-translation from the cam-
era, they more easily recover from bad segmentation masks
– and vice-versa for depth-based methods. For those meth-
ods that provide results using stricter AD thresholds, we ad-
ditionally provide a comparison in Tables 3 and 4. Again,
our approach increases accuracy by several percent, even
achieving accuracy on the stricter 0.05d threshold that is
competitive to the performance of the compared methods
on the permissive 0.1d threshold. The results, moreover,
indicate that the addition of RL is especially beneficial for
these stricter thresholds. Since we train a single model and
do not provide the agent with any information on the object
class, prioritizing features that support refinement of one
class might hinder that of another one. Sacrificing some
generality by introducing class labels as input to ReAgent
should allow a more uniform increase of performance.

For the step-wise illustrations in Figure 4, we zoom-in on
the objects, as indicated by the black box in the top row, to
highlight the high pose accuracy achieved by our ReAgent,
barely distinguishable from the ground-truth pose. The pose
accuracy already increases significantly within the first few
ReAgent steps. For consistency, we keep using 10 steps
on LINEMOD (as in the ModelNet40 experiments). While
this might be reduced in real-world applications to speed-
up refinement even more (below the 22ms achieved at the
moment with 10 steps), the higher number of steps enables
increased robustness to initialization errors.

A runtime comparison is more difficult on LINEMOD as
we rely on reported numbers using different hardware. Still,
the 22ms required by our approach (GTX 1080) compares
favorably to 30ms for DPOD refinement (Titan X), 83ms
for DeepIM (GTX 1080 Ti) and PFRL with 240ms (RTX
2080 Ti). Wang et al. [7] report no hardware and only pro-
vide runtimes for scenes of 3 to 6 objects, with 20+10ms for
DenseFusion refinement (20ms for initial embeddings) and
10.4s for the ICP-based method from [9]. The latter refines
multiple hypotheses and uses rendering-based verification.

3. Architecture Details

Table 5 details the architecture with all used layers, their
input and output dimensions. Note that the initial embed-
ding is computed for both source and target with shared
weights. Also, the action embeddings and policies are com-
puted for both rotation and translation, although the layers
are given only once in Table 5.

4. Definition of Used Metrics

The metrics provided for our experiments are commonly
used in related work [8, 10, 2]. We provide their definition

Layer In Out
Embeddings φ(X′i) and φ(Y ) (shared)
Conv1d N × 3 N × 64
ReLU

Conv1d N × 64 N × 128
ReLU

Conv1d N × 128 N × 1024
max N × 1024 1× 1024

State S via φ(X′i)⊕ φ(Y )
concat 2(1× 1024) 2048

Embeddings φR(S) and φt(S)
FC 2048 512

ReLU
FC 512 256

ReLU
Value v̂, using φR(S)⊕ φt(S)

concat 2(256) 512
FC 512 256

ReLU
FC 256 1

Policies πR(φR(S)) and πt(φt(S))
FC 256 33

reshape 33 3× 11

Table 5: ReAgent network architecture.

in condensed form in the following section.
Mean Absolute Error (MAE): The MAE between a

vector of estimated v′ and true values v is defined as

MAEv =
1

3

∑
|v′ − v|, (1)

where v is either the vector of Euler angles in degrees rep-
resenting the rotation or the translation vector.

Isotropic Error (ISO): While MAE considers axes in-
dividually, ISO is computed over the full rotation and full
translation. For the rotation error ISOR, we compute the
angle of the residual rotation matrix by

ISOR = arccos
trace(R′−1, R)− 1

2
(2)

and Euclidean distance between the estimated and true
translation

ISOt = ||t′ − t||2. (3)

Chamfer Distance (C̃D): The Chamfer distance is used
in the reward function of ReAgent. It is defined as

CD(X,Y ) =
1

|X|
∑

x∈X min
y∈Y
||x− y||22. (4)

Modified Chamfer Distance C̃D: A modified variant is
proposed in [10]. Compared to MAE and ISO, it considers
the distances between points and not the transformations.
It therefore implicitly considers symmetry. Based on the
definition of the Chamfer distance, it is defined as

C̃D(X,Y ) = CD(X,Yclean) + CD(Y,Xclean), (5)

where Xclean and Yclean are the respective point cloud be-
fore applying noise and we compute C̃D(X ′, Y ).

Average Distance of Model Points (ADD) and Av-
erage Distance of Model Points with Indistinguishable



Views (ADI): The ADD is proposed in [2]. Given a model
under an estimated pose X ′ and under the true pose Y , it is
defined as the mean distance between corresponding points

ADD =
1

|Y |
∑

y∈Y,x′∈X′ ||y − x′||2. (6)

In addition, Hinterstoisser et al. [2] propose to account
for symmetrical true poses by considering the closest point
pairs, defined as

ADI =
1

|Y |
∑

y∈Y min
x′∈X′

||y − x′||2. (7)

The ADI recall for a specific precision threshold and N test
samples is

ADIth =
1

N

∑
i

{
0, ADIi > th

1, ADIi ≤ th,
(8)

where ADIi is the ADI of the ith test sample. The ADD
recall is computed analogously. Note that, as C̃D, the ADI
metric implicitly considers symmetry.

ADI Area-under-Curve (ADI AUC): ADIth is com-
puted at uniformly spaced thresholds up to maximum pre-
cision threshold. This results in a monotonically increasing
precision-recall curve. ADI AUC is then defined as the area
under this curve

AUC =
1

thmax

∑
th∈[0:∆:thmax]

ADIth ·∆, (9)

where ∆ is the threshold spacing. We use thmax = 0.1d
and ∆ = 1e−3d, where d is the diameter of the point cloud
computed as maximal distance between any two points

d = max
x1,x2∈X

||x1 − x2||2. (10)
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