
Supplementary Material for Scale-Localized Abstract Reasoning

A. An example of biases in the construction of
the negative choices

In the main paper, Sec. 2.1, we discuss the importance
of the selected approach for the creation of the negative
choices and that it should be done carefully. In this sec-
tion, we elaborate on this topic by showing examples for
bad edge cases.

Consider the following four sets of answers to the ques-
tion “when and where was ’The Declaration of the Rights
of Man’ published?”

1. (a) Aug. 1789, France (b) Albert Einstein
(c) 55% (d) Alpha Centauri A

2. (a) Aug. 1789, France (b) Nov. 1784, Italy
(c) Dec. 1780, Brazil (d) Feb. 1782, Japan

3. (a) Aug. 1789, France (b) Nov. 1789, France
(c) Aug. 1784, France (d) Aug. 1789, Italy

4. (a) Aug. 1789, France (b) Nov. 1789, France
(c) Nov. 1784, France (d) Nov. 1784, Italy

In all options, the correct answer is the same (a). How-
ever, there is a big difference in the negative examples that
make the question either easier of harder to answer.

The first option is too simple. The negative choices do
not fit the domain of the question and it can be solved with-
out any prior knowledge (by prior knowledge, we mean
having some information about the questions). The only
answer that fits the domain is also the correct answer.

In the second option, all negative choices are from the
same domain as the correct answer. The negative choices
are similar enough so that the correct answer cannot be cho-
sen, beyond luck, without having at least some prior knowl-
edge. However, the options are at the same time random
enough so that knowing only one attribute (month, year, lo-
cation) is sufficient to know the answer. For example, one
only needs to know that the declaration was published in
France to correctly answer the question, without knowing
when it was published.

In the third options, each negative choice is produced by
changing a single attribute from the correct answer. Un-
like the previous option, knowing only one attribute is not
enough to eliminate all negative choices, which makes the

Table 1. Dataset benchmarks using ResNet. Accuracy(%)

PGM RAVEN

Model all lines shapes ORIG FAIR R-IN R-ALL

ResNet-Blind 18.6 33.8 14.7 80.2 17.2 13.1 13.5
ResNet-MC 41.1 60.7 28.7 72.5 24.5 52.8 81.6
ResNet-SC 48.9 67.1 40.1 40.4 58.4 82.9 94.4

question more difficult. However, one could notice that
’Aug’, ’1789’ and ’France’ are majority attributes in all the
answers. If this pattern is recurring across all questions in
the test, the participant can learn how to locate the correct
answers without even looking at the question. Paradoxi-
cally, this issue becomes more severe when more choices
are given, in contrast to the purpose of adding more choices.

Finally, the fourth option overcomes all the limitations of
the previous examples. The negative choices are sufficiently
related so that elimination requires prior knowledge and the
attributes are diverse enough so that a majority guess does
not promise a correct answer. However, this option is more
complicated to produce and a sophisticated method for gen-
erating the negative choices needs to be designed.

A.1. Implications for RAVEN

As explained in the related work (Sec. 2), the negative
examples in RAVEN are generated by changing a single ar-
bitrary attribute from the correct answer every time. This
approach is equivalent to option (3) in the example given
above. The problem with this approach is that the model
can learn to extract the properties of each attribute from the
choice images and compare which values occur in most op-
tions. The model can then make an educated guess on which
choice is the correct answer.

In the next section, we show that this topic is not just
a hypothetical concern, but an actual flaw of the RAVEN
dataset that is easily exploited by MC protocol models.

B. Dataset analysis

In Sec. 2.1 of the paper, we discuss the datasets and their
potential pitfalls. We then define two different protocols
(SC and MC) that can be followed when challenging this
task. In Sec. 3, we provide a new dataset (RAVEN-FAIR)

1



that is better suited than the original dataset for the MC pro-
tocol. We have discussed the results of experiments done on
the blind, SC and MC settings. In this section, we provide
the details of these experiments and their results.

Before using the PGM and RAVEN datasets in our ex-
periments. We analyzed each of them in how they perform
on three tests: (i) context-blind test, (ii) multiple choice test
(iii) single choice test. The results can be seen in Tab. 1.
The model for each test is based on the ResNet16, with
an adjusted input and output layer to comply with each
test. For the context-blind test, the model (ResNet-Blind)
accepts the eight choices, without the context images, as
an 8-channel image and produces a probability for each of
the input channels to be the correct answer. For the multi-
ple choice test, the model (ResNet-MC) accepts all 16 im-
ages as a 16-channel image (context:1-8, choices:9-16) and
produces the probability for channels 9-16, which are the
choices. For the single choice test, the model (ResNet-SC)
accepts a 9-channel image with the context being the first
eight channels and a choice added as the ninth channel. The
model is fed eight iterations for each question to evaluate
each choice separately, and the image with the highest score
is chosen as the correct one.

For PGM, we evaluated not only the full dataset, but also
two subsets of it, where rules were only applied on the lines
or on the shapes. Each subset accounts for roughly a third
of the dataset and the remaining third is where both line
and shape rules are applied simultaneously. In Tab. 1, the
full dataset came out to be relatively balanced, it had a low
score on the context-blind test (18.6%) and balanced score
between the MC and SC protocols (41% for MC and 48.9%
for SC). We have found the lines subset to be significantly
easier overall than the shapes subset across all tests, which
suggests that the dataset could be improved in that regard.

For RAVEN, we compared four different versions of the
dataset. The difference between the versions is the method
in which the negative choices were selected. ORIG is the
original version of RAVEN. FAIR is our proposed improved
dataset. R-IN and R-ALL are two versions where the neg-
ative choices were chosen randomly. In R-IN, the negative
examples were sampled from the same domain as the cor-
rect answer. In R-ALL, we sampled from all domains. The
four versions of the dataset represent the four options pre-
sented in the question earlier in Sec. A. R-ALL represents
option 1, since the negative choices are out of the domain
of the correct answer. R-IN represents option 2, since the
negative choices are randomly selected from within the do-
main of the correct answer. ORIG represents option 3, since
the negative choices are one attribute away from the correct
one. FAIR represents option 4, since it aims not to be too
conditioned on the correct answer while not being too ran-
dom.

The evaluation in Tab. 1, shows that RAVEN indeed fails

the context-blind test (80.2%). On the other hand, R-IN
(13.1%) and R-ALL (13.3%) were unsolvable in this set-
ting, as expected. RAVEN-FAIR passed the context-blind
as well (17.2%), with an equal performance with PGM.
When the context was added, both R-IN and R-ALL be-
came notably easy to solve (82.9%, 94.4% respectively
on ResNet-SC), which highlights that sampling negative
choices randomly is a bad design. ORIG turned out to be
more difficult than FAIR in the SC test. This is reasonable
since all negative examples are very close to the correct an-
swer in ORIG, which makes them more challenging than
those of FAIR. On the other hand, ORIG turned out to be
really easy in the MC test (72.5%), while FAIR was signif-
icantly harder (40.4%). This is due to the fact that ORIG
fails the context-blind test and is easy to solve when all
the choices are presented simultaneously. This evaluation
shows that one needs to be very careful in evaluating mod-
els with RAVEN, since it cannot be used in the MC setting.

Interestingly, except for the original RAVEN, ResNet-
SC performed consistently better than ResNet-MC. This is
in contrast to the common sense that MC is a simpler set-
ting than SC due to capability to compare the choices. We
conclude that this is an architectural drawback of ResNet-
MC that it has less practical capability, since it processes all
choices at once without added capacity. It is also not permu-
tation invariant to the choices, which means that changing
the order of the choices could lead to a different result.

C. Analyzing PGM per rule and stage
In Sec. 5, we analyze the performance on PGM per rule

and per stage in our networks. This allows us to deter-
mine which stage is responsible for solving each task. We
have shown visually how each stage performs on each task.
In addition to that, Tab. 2 shows the accuracy for in total
and for each stage with respect to each rule. The table
also shows the accuracy per type of operation (’progres-
sion’, ’logical’, ’consistent-union’), where this separation
was not done in the main paper. We noticed that the oper-
ations have sometimes different performances. For exam-
ple, in PGM meta, the rules ’shape-color’, shape-type’ and
’shape-size’ work much better in ’progression’ than in the
other operations. We also noticed that, for each rule, the
same resolution solves all operations.

To better understand how each resolution solves each
type of rule, we performed a t-SNE analysis of the em-
bedding layer vt of each resolution, for the embedding of
the correct answer Ia

∗
. The analysis was done on the fully

trained model with L3. It can be seen in Fig. 1. It should be
noted that separation of the rules in the latent space is not
a requirement for accuracy in solving the task, but we have
observed high correlation between the two in each resolu-
tion and it is a valuable analysis nevertheless. (a) The upper
resolution is good at separating most rule types. It even sep-

2



Table 2. Understanding the role of each scale in PGM. Accuracy(%)

Operation

Progression XOR+OR+AND Consistent Union

Subset Attribute ALL H M L ALL H M L ALL H M L
PG

M

Shape

Color 14.8 14.8 12.2 14.1 15.4 14.7 14.9 12.1 17.3 16.2 14.6 11.9
Type 23.8 20.8 12.6 11.5 12.9 13.5 12.1 10.3 15.7 11.0 12.1 13.2
Size 96.5 95.7 13.5 11.5 51.0 43.9 13.7 14.9 79.1 73.6 12.0 15.1
Position 7 99.9 99.9 12.6 14.7 7
Number 100 12.7 100 12.4 7 100 13.7 100 13.7

Line Color 100 13.3 10.7 100 96.9 12.4 12.6 92.9 99.6 12.5 11.4 99.9
Type 7 100 39.1 13.1 30.4 100 100 15.9 12.8

PG
M

m
et

a

Shape

Color 71.5 58.9 11.8 15.6 31.4 29.0 12.3 12.0 40.8 28.5 12.7 15.4
Type 92.6 88.8 13.0 17.5 52.0 47.8 15.2 13.5 65.8 47.7 12.8 12.8
Size 92.3 91.2 12.7 15.0 56.3 45.6 11.7 12.1 72.5 65.9 15.1 14.3
Position 7 99.9 94.6 68.8 12.5 7
Number 100 14.8 100 12.1 7 99.6 13.7 99.4 14.6

Line Color 100 12.3 13.8 100 96.0 11.3 12.4 87.3 100 12.1 10.6 99.9
Type 7 100 50.8 12.9 49.2 100 99.9 15.7 23.4

PG
M

L
3 Shape

Color 91.5 89.5 12.7 13.7 54.5 48.7 12.0 12.7 88.0 83.3 12.2 13.1
Type 98.2 97.2 14.1 12.1 80.0 76.9 12.6 12.5 91.3 88.5 13.0 11.5
Size 98.0 92.5 11.7 12.6 79.8 76.4 12.8 12.4 93.9 88.2 12.6 13.9
Position 7 99.9 98.5 99.9 12.5 7
Number 100 27.2 100 12.1 7 100 25.3 99.9 12.5

Line Color 100 12.6 99.2 100 97.7 14.6 87.7 97.2 100 12.5 97.9 98.3
Type 7 99.9 99.5 99.8 39.3 100 99.6 99.8 34.4

Figure 1. t-SNE analysis of each resolution. (a) High resolution vh. (b) Middle resolution vm. (c) Low resolution vl.

arates ’line-type’ into distinct sub-groups, which we have
found to be correlated to the relational operation ’progres-
sion’, ’union’, ’xor’, etc’. (b) The middle resolution is very
good at separating some tasks, such as ’line-type’, ’line-
color’, ’shape-number’, and ’shape-position’. These rules
are also separated into sub-groups and are also where this

resolution has a high accuracy on. The other rules are not
separated at all and the resolution also had trouble in solving
them. (c) The lower resolution had the lowest overall per-
formance in accuracy and also in separating the rules. How-
ever, we did notice that it was exceptional in separating the
’line-color’ rules into multiple sub-groups. The lower reso-

3



(a) (b)
Figure 2. Accuracy for each rule over time. (a) Without L3. (b) With L3. It can be seen that during each ’step’, the model is focused at
learning a different subset of tasks. It is also noticeable that the added multihead loss immediately improves the rules that the model was
not able to solve.

lution also has the highest accuracy on this type of rules.
Aside from the final results per rule, we noticed an inter-

esting behaviour in the training convergence. Fig. 2 shows
the accuracy of each rule and operation over time. We no-
ticed that the model does not learn all the rules at the same
time. Instead, the training appears to go in stages, where
the model learns a particular kind of rule at each stage. In
Fig. 2(a), we show the learning progress without L3, and
in Fig. 2(b), we show the contribution of L3 when it is
added. It was especially surprising to see that the model
only started to learn ’line-color’ very late (around 500K it-
erations) but did it very fast (within 50K iterations for ’pro-
gression’ and ’union’). The model is able to learn numerous
rules without the multihead loss L3. However, many rules,
especially in the ’shape’ category are not solved well. The
addition of the multihead loss immediately and significantly
increases the performance on all rules.

Since training took a long time and we measured only
after each epoch, the plot doesn’t show the progress in the
early stages of the training, which would show when the
’easier’ tasks have been learned. Future work can focus on
this ’over-time’ analysis and try to explain: (i) ’why are
some rules learned and others not?’, (ii) ’why are some rules
learned faster than others?’, (iii) ’how can the training time
be shortened?’, (iv) ’would the rules that were learned late
also be learned if the easier rules were not present?’.

D. Architecture of each sub-module
We detail each sub-module used in our method in Tab. 4-

7. Since some modules re-use the same blocks, Tab. 3 de-
tails a set of general modules.

4



Table 3. General modules, with variable number of channels c.

Module layers parameters input output

ResBlock3(c)

Conv2D CcK3S1P1 x
BatchNorm
ReLU
Conv2D CcK3S1P1
BatchNorm x′

Residual (x, x′) x′′ = x+ x′

ReLU

DResBlock3(c)

Conv2D CcK3S1P1 x
BatchNorm
ReLU
Conv2D CcK3S1P1
BatchNorm x′

Conv2D CcK1S2P0 x
BatchNorm xd

Residual (xd, x
′) x′′ = xd + x′

ReLU

ResBlock1(c)

Conv2D CcK1S1P0 x
BatchNorm
ReLU
Conv2D CcK1S1P0
BatchNorm x′

Residual (x, x′) x′′ = x+ x′

ReLU

Table 4. Encoders Eh, Em, El

Module layers parameters input output

Eh

Conv2D C32K7S2P3 I1

BatchNorm
ReLU
Conv2D C64K3S2P1
BatchNorm
ReLU e1h

Em

Conv2D C64K3S2P1 e1h
BatchNorm
ReLU
Conv2D C128K3S2P1
BatchNorm
ReLU e1m

El

Conv2D C128K3S2P1 e1m
BatchNorm
ReLU
Conv2D C256K3S2P1
BatchNorm
ReLU e1l

5



Table 5. Relation networks RNh, RNm, RNl

Module layers parameters input output

RNh

Conv2D C64K3S1P1 (e1h, e
2
h, e

3
h)

ResBlock3 C64
ResBlock3 C64
Conv2D C64K3S1P1
BatchNorm r1h

RNm

Conv2D C128K3S1P1 (e1m, e2m, e3m)
ResBlock3 C128
ResBlock3 C128
Conv2D C128K3S1P1
BatchNorm r1m

RNl

Conv2D C256K1S1P0 (e1l , e
2
l , e

3
l )

ResBlock1 C256
ResBlock1 C256
Conv2D C256K1S1P0
BatchNorm r1l

Table 6. Bottlenecks Bh, Bm, Bl

Module layers parameters input output

Bh
DResBlock3 C128 bh
DResBlock3 C128
AvgPool2D vh

Bm
DResBlock3 256 bm
DResBlock3 C128
AvgPool2D vm

Bl

Conv2D C256K1S1P0 bl
BatchNorm
ReLU
ResBlock1 C128 vl

Table 7. MLP
Module layers parameters input output

MLP

Linear C256 (vh, vm, vl)
BatchNorm
ReLU
Linear C128
BatchNorm
ReLU
Linear C1
Sigmoid p(y = 1|Ia, IC)

6


