
Supplementary Information: How does topol-
ogy influence gradient propagation and model
performance of deep networks with DenseNet-
type skip connections?

A. DNNs/CNNs with random skip connections
are Small-World Networks

In network theory, a small world network is formed by

superimposing a random network R on top of a lattice net-

work G (see Fig. 7) [20, 22]. As a result, these networks

have both short-range and long-range links. Similarly, the

DNNs/CNNs considered in our work have both short-range

(due to layer-by-layer convolutions) and long-range links

(due to random skip connections; see Fig. 1(a)). This is

illustrated in Fig. 7.

B. Derivation of Density of a Cell
Note that, the maximum number of neurons contributing

skip connections at each layer in cell c is given by tc. Also,

for a layer i, possible candidates for skip connections = all

neurons up to layer (i − 2) are wc(i − 1) (see Fig. 1(a)).

Indeed, if tc is sufficiently large, initial few layers may not

have tc neurons that can supply skip connections. For these

layers, we use all available neurons for skip connections.

Therefore, for a layer i, #skip connections (li) is given by:

li =

{
wc(i− 1)× wc if tc > wc(i− 1)

tc × wc otherwise
(4)

where, both cases have been multiplied by wc because once

the neurons are randomly selected, they supply skip connec-

tions to all wc neurons at the current layer i (see Fig. 1(a)).

Hence, for an entire cell, total number of neurons contribut-

ing skip connections (lc) is as follows:

lc = wc

dc−1∑
i=2

min{wc(i− 1), tc} (5)

On the other hand, the total number of possible skip con-

nections within a cell (L) is simply the sum of possible

candidates at each layer:

L =

dc−1∑
i=2

wc(i− 1)× wc = w2
c

dc−1∑
i=2

(i− 1)

= w2
c [1 + 2 + . . .+ (dc − 2)]

=
w2

c (dc − 1)(dc − 2)

2

(6)

Using Eq. 5 and Eq. 6, we can rewrite Eq. 1 as:

ρc =
2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(7)

C. Proof of Proposition 1
Proposition 1 (NN-Mass and average degree of the net-
work (a topological property)). The average degree of a
DenseNet-type deep network with NN-Mass m is given by
k̂ = wc +m/2.

Proof. As shown in Fig. 7, deep networks with shortcut

connections can be represented as small-world networks

consisting of two parts: (i) lattice network containing only

the layer-by-layer links, and (ii) random network superim-

posed on top of the lattice network to account for random

skip connections. For sufficiently deep networks, the average

degree for the lattice network will be just the width wc of

the network. We consider the connections as undirected con-

nections; hence each of the connection is counted only once.

The average degree of the randomly added skip connections

k̄R|G is given by:

k̄R|G =
Number of skip connections added by R

Number of nodes

=
wc

∑dc−1
i=2 min{wc(i− 1), tc}

wcdc

=
m(dc − 1)(dc − 2)

2d2c
(Eq. 2 for one cell, Nc = 1)

≈ m

2
(when dc >> 2, e.g., for deep networks)

(8)

Therefore, average degree of the complete model is given by

wc +m/2.

D. Proof of Proposition 2
Proposition 2 (NN-Mass and LDI). Consider the case of
deep linear networks with concatenation-type skip connec-
tions, where each layer is initialized using independently and
identically distributed values with initialization variance q.
For this setup, suppose we are given a small network fS
(depth dS) and a large network fL (depth dL, dL >> dS),
both with same initialization scheme, NN-Mass m, and width
wc. Then, the mean singular value of the initial layerwise
Jacobian (E[σ]) for both networks is bounded as follows:√

q(wc +m/2)−√
qwc ≤ E[σ] ≤

√
q(wc +m/2)+

√
qwc

That is, the LDI for both models does not depend on the
depth if the initialization variance (q) for each layer is
depth-independent (which is the case for many initialization
schemes). Hence, for such networks, models with similar
width and NN-Mass result in similar gradient properties,
even if their depths and number of parameters are different.

Proof. We now formally prove the above result under the

assumption of deep linear networks [29, 12, 1, 10]. As stated

in the main text, layerwise Jacobians for linear networks fol-

low a Gaussian distribution. We first prove the above result

Short-range links Long-range links

= +
Small-World Network Lattice Network (G) Random Network (R)

Each node has
k short-range

neighbors

…

…
…… … …

…
…

…
…

…

…… … …

…
…

…

…

…

…… … …

…
…

…
= +

CNN architecture with
long-range links

Lattice Network (G) containing
layer-by-layer connections

Random Network (R)
consisting of long-range links

a. Traditional Network Science:

b. A Convolutional Neural Network: wc incoming links at each node (channel)

Figure 7: (a) Small-World Networks in traditional network science are modeled as a superposition of a lattice network (G) and

a random network R [32, 22, 20]. (b) A DNN/CNN with both short-range and long-range links can be similarly modeled as a

random network superimposed on a lattice network. Not all links are shown for simplicity.

for a matrix M ∈ R
H×W with H rows and W columns,

where H ≥ W , and all entries independently initialized with

a Gaussian Distribution N (0, q). Towards the end of the

proof, we will show how the results for matrix M above

apply to the correct layerwise Jacobians for a linear network

(Ji,i−1 = Wi, where Wi is initialized as Gaussian with

variance q).

To calculate the mean singular value of M , we perform

Singular Value Decomposition (SVD) for matrix M :

U ∈ R
H×H ,Σ ∈ R

H×W , V ∈ R
W×W = SVD(M)

Σ ∈ R
H×W = Diag(σ0, σ1, ..., σK)

Given the ith row vector �ui ∈ R
H in U , and the ith row

vector �vi ∈ R
W in V , we use the following relations of SVD

in our proof:

σi = �ui
TM�vi

�ui
T �ui = 1

�vi
T �vi = 1

It is hard to directly compute the mean singular value

E[σi]. To simplify the problem, consider σ2
i using the fol-

lowing product of SVD:

MTM = UΣV TV ΣTUT = U(ΣΣT)UT (9)

Consequently, the square of singular value (σ2
i) of M are the

eigenvalues (λ
′
i) of MTM :

σ2
i = λ

′
i (10)

Mathematically, 1√
qM is a standard Gassian Random

Matrix, i.e., all the elements of 1√
qM follow an i.i.d. stan-

dard Guassian Distribution N (0, 1). From the theory of

random matrix, the matrix 1
qM

TM is a Wishart ensem-

ble [33]. Therefore, the distribution of the eigenvalues

(λ1, λ2, ..., λi, ...) of 1
qM

TM is Wishart Distribution. Then,

for the Wishart Distribution, we know that the expectation

of (λ1, λ2, ..., λi, ...) [18]:

E[(λ1, λ2, ..., λi, ...)] = (H,H, ..,H, ...) (11)

Clearly, λ
′
i = qλi. Combing Eq. 10 and Eq. 11, we get

the following results:

E[σ2
i] = qH (12)

Eq. 12 states that, by keeping the same initialization vari-

ance q, for a Gaussian M ∈ R
H×W with H ≥ W , E[σ2

i]
is dependent on number of rows H , and does not depend

on W. To empirically verify this, we simulate several Gaus-

sian matrices of widths W ∈ {20, 40, 80, 120, 160, 200}
and H ∈ [200, 1200]. We plot E[σ2

i] vs. H in Fig. 8. As evi-

dent, the means of square of singular values E[σ2
i] are nearly

coinciding for different W , thereby showing that mean sin-

gular value indeed depends only on H .

While Eq. 12 analytically shows the relationship between

E[σ2
i] and H , the LDI [13] depends on the mean singu-

lar value E[σi] (and not its square). Although, the analyt-

ical expression for E[σi] is still an unsolved mathematical

problem, it is still possible to provides its bounds. Us-

Figure 8: Mean of square of singular value E[σ2
i] only in-

creases with H while varying W when H ≥ W .

ing the theory of Marchenko–Pastur distribution, all sin-

gular values for matrix M asymptotically lie in the interval

[
√
qH − √

qW,
√
qH +

√
qW] [19, 27]. Therefore, the

mean singular value also asymptotically lies in the interval

[
√
qH −√

qW,
√
qH +

√
qW].

We now consider the initial layerwise Jacobian matrices

(Ji,i−1) for the deep linear network scenario (i.e., Ji,i−1 =
Wi, where Wi is initialized as Gaussian with variance q).

As explained in the main paper, the layerwise Jacobians will

theoretically have (wc + m/2, wc) dimensions, where wc

is the width of DNN and m is the NN-Mass. That is, now

M = Ji,i−1, W = wc, and H = wc + m/2. Hence, the

above bounds for the mean singular value become:√
q(wc +m/2)−√

qwc ≤ E[σ] ≤
√

q(wc +m/2)+
√
qwc

(13)

The above bound states that if the initialization variance

q is not dependent on depth (which is true for many initial-

ization schemes), then, layerwise mean singular values for

the given deep linear networks fS (depth dS) and fL (depth

dL, dL >> dS) depends only on width wc and NN-Mass m.

Therefore, for such deep networks, if wc and m are the same,

their layerwise dynamical isometry property (i.e., the mean

singular values of initial layerwise Jacobians) has the same

bounds. In other words, if two networks fS and fL have

same width wc and NN-Mass m, they have similar gradient

properties (i.e., LDI) even if they have significantly different

depth and number of parameters.

To empirically verify the Proposition 2 result, we plot

the mean singular values as well as the bounds in (13) for

Gaussian distributed matrices of size (wc+m/2, wc) vs. NN-

Mass (m) in Fig. 1(b) in the main paper. Clearly, the mean

singular values for these simulated Jacobians fall within

the above bounds. We will explicitly demonstrate in our

experiments that NN-Mass is correlated with LDI for actual

non-linear deep networks.

E. CNN Details

In contrast to our MLP setup which contains only a single

cell of width wc and depth dc, our CNN setup contains three

cells, each containing a fixed number of layers, similar to

prior works such as DenseNets [7], Resnets [5], etc. How-

ever, topologically, a CNN is very similar to MLP. Since in

a regular convolutional layer, channel-wise convolutions are

added to get the final output channel (see Fig. 1(c)), each

input channel contributes to each output channel at all lay-

ers. This is true for both long-range and short-range links;

this makes the topological structure of CNNs similar to our

MLP setup shown in Fig. 1(a) in the main paper (the only

difference is that now each channel is a node in the network

and not each neuron).

In the case of CNNs, following the standard practice [30],

the width (i.e., the number of channels per layer) is increased

by a factor of two at each cell as the feature map height

and width are reduced by half. After the convolutions, the

final feature map is average-pooled and passed through a

fully-connected layer to generate logits. The width (i.e., the

number of channels at each layer) of CNNs is controlled

using a width multiplier, wm (like in Wide Resnets [37] and

Mobilenets [6]). Base #channels in each cell is [16,32,64].

For wm = 2, cells will have [32,64,128] channels per layer.

F. Example: Computing NN-Mass for a CNN

Given a CNN architecture shown in Fig. 9, we now cal-

culate its NN-Mass. This CNN consists of three cells, each

containing dc = 4 convolutional layers. The three cells

have a width, (i.e., the number of channels per layer) of

2, 3, and 4, respectively. We denote the network width as

wc = [2, 3, 4]. Finally, the maximum number of channels

that can supply skip connections is given by tc = [3, 4, 5].
That is, the first cell can have a maximum of three skip con-

nection candidates per layer (i.e., previous channels that can

supply skip connections), the second cell can have a max-

imum of four skip connection candidates per layer, and so

on. Moreover, as mentioned before, we randomly choose

min{wc(i − 1), tc} channels for skip connections at each

layer. The inset of Fig. 9 shows how skip connections are

created by concatenating the feature maps from previous

layers.

Hence, using dc = 4, wc = [2, 3, 4], and tc = [3, 4, 5] for

each cell c, we can directly use Eq. 2 to compute the NN-

Mass value. Putting the values in the equations, we obtain

m = 28. Consequently, the set {dc, wc, tc} can be used

to specify the architecture of any CNN with concatenation-

type skip connections. Therefore, to perform experiments,

we vary {dc, wc, tc} to obtain architectures with different

1

2

3

4

5

6

7

8

tc = 3

tc = 4
tc = 5

Not all links are shown above. If a
channel is selected, it contributes
long-range links to all output
channels of the current layer

1

2

3

4

5

6

1

2

3

4

5

6

Concatenate feature
maps like Densenets

Average
Pool

Logits
Outputs after
softmax

… … …

Fully-connected

Cell 1 Cell 2
Cell 3

Layer i=2: Long-range links (violet) from 4
previous channels because min{wc(i-1), tc} = 4

No long-range links between cells

Layer i: 0 1 2 3

Layer i=3: Long-range links (green) from 5
previous channels because min{wc(i-1), tc} = 5

Initial
conv

Max previous channels
for long-range links

All links

dc =4 layers

w
c

=3

Figure 9: An example of CNN to calculate NN-Mass. Not all links are shown in the main figure for simplicity. The inset shows

the contribution from all long-range and short-range links: The feature maps for randomly selected channels are concatenated

at the current layer (similar to DenseNets [7]). At each layer in a given cell, the maximum number of channels that can

contribute skip connections is given by tc.

NN-Mass values.

G. Complete Details of the Experimental Setup

G.1. MLP Setup

We now explain more details on our MLP setup for the

MNIST dataset. We create random architectures with differ-

ent NN-Mass and #Params by varying tc and dc. Moreover,

we just use a single cell for all MLP experiments. We fix

wc = 8 and vary dc ∈ {16, 20, 24, 28, 32}. For each depth

dc, we vary tc ∈ {0, 1, 2, . . . , 14}. Specifically, for a given

{dc, wc, tc} configuration, we create random skip connec-

tions at layer i by uniformly sampling min{wc(i − 1), tc}
neurons out of wc(i − 1) activation outputs from previous

{0, 1, . . . , i− 2} layers.

We train these random architectures on the MNIST

dataset for 60 epochs with Exponential Linear Unit (ELU)

as the activation function. Further, each {dc, wc, tc} con-

figuration is trained five times with different random seeds.

In other words, during each of the five runs of a specific

{dc, wc, tc} configuration, the shortcuts are initialized ran-

domly so these five models are not the same. This kind of

setup is used to validate that NN-Mass is indeed a topological

property of deep networks, and that the specific connections

inside the random architectures do not affect our conclusions.

The results are then averaged over all runs: Mean is plotted

in Fig. 3 and standard deviation, which is typically low, is

also given in Fig. 3 caption. Overall, this setup results in

many MLPs with different #Params/FLOPS/layers.

G.2. CNNs with DenseNet-type Skip Connections

Much of the setup for creating concatenation-type skip

connections in CNNs is the same as that for MLPs, except

we have three cells instead of just one. As explained in

Appendix E, the width of the three cells is given as wm×
[16, 32, 64], where wm is the width multiplier. Note that,

since we have three cells of different widths (wc), tc also

has a different value for each cell. The depth per cell dc
is the same for all cells; hence, the total depth is given by

3dc + 4. For instance, for 31-layer model, our dc = 9. For

most of our experiments, we set the total depth of the CNN

as {31, 40, 49, 64}. Some of the experiments also use a total

depth of {28, 43, 52, 58}.

Again, we conduct several experiments for different

{dc, wc, tc} values which yield many random CNN architec-

tures. The random skip connection creation process is the

same as that in MLPs and, for CNN experiments, we have

repeated all experiments three times with different random

seeds. Specific numbers used for {dc, wc, tc} are given in

Tables 3, 4, and 5. Each row in all tables represents a differ-

ent {dc, wc, tc} configuration. Of note, all CNNs use ReLU

activation function and Batch Norm layers.

Table 3: CNN architecture details (width multiplier = 2)

Number

of Cells

Max. Long-Range

Link Candidates (tc)
Depth Width Multiplier

3

[10,35,50]

[20,45,75]

[30,50,100]

[40,60,120]

[50,70,145]

31 2

3

[20,40,70]

[30,50,100]

[40,80,125]

[50,105,150]

[60,130,170]

40 2

3

[25,50,90]

[35,80,125]

[50,105,150]

[70,130,170]

[90,150,210]

49 2

3

[30,80,117]

[50,110,150]

[70,140,200]

[90,175,250]

[110,215,300]

64 2

For CNNs, we verify our findings on CIFAR-10 and

CIFAR-100 image classification datasets. The learning rate

for all models is initialized to 0.05 and follows a cosine-

annealing schedule at each epoch. The minimum learning

rate is 0.0 (see the end of Section H.10 for details on how we

fixed these hyper-parameter values). Similar to the setup in

NAS prior works, the cutout is used for data augmentation.

G.3. MobileNet-v2 Setup

We create random MobileNet-v2-like architectures with

different NN-Mass, #Params, and MACs by varying Nc

and width-multiplier. The standard MobileNet-v2 has

{1, 2, 3, 4, 3, 3, 1} inverted residual blocks with width (num-

ber of channels) {16, 24, 32, 64, 96, 160, 320}. Corre-

spondingly, our searched compressed MobileNet-v2 has

{2, 3, 4, 5, 4, 3, 3, 1} inverted residual blocks with the same

width as standard MobileNet-v2. Furthermore, we sampled

the width-multiplier as {0.15, 0.35, 0.6, 0.75, 0.9, 1.0}.

As for the training process, we use the same train-

ing hyperparameters for all networks. We use SGD with

momentum = 0.9 and weight− decay = 4 ∗ 10−5 as the

optimizer. Moreover, we set the training epochs as 150, batch

size as 256, and initial learning rate lr0 = 0.05. For epoch e,

the corresponding learning rate lre =
lr0
2 (1 + cos(e−1

150 π)).
All models are trained in Pytorch on NVIDIA 1080-Ti, Ti-

tanXp, 2080-Ti, V100, and 3090 GPUs. This completes the

experimental setup.

Table 4: CNN architecture details (width multiplier = 1)

Number

of Cells

Max. Long-Range

Link Candidates (tc)
Depth Width Multiplier

3

[5,8,12]

[10,30,50]

[30,40,70]

[41,61,91]

[50,90,110]

31 1

3

[5,9,12]

[11,31,51]

[31,41,71]

[41,62,92]

[50,90,109]

40 1

3

[5,10,11]

[11,31,52]

[31,41,73]

[42,62,93]

[50,90,109]

49 1

3

[5,10,12]

[11,32,53]

[31,42,74]

[42,62,94]

[49,90,110]

64 1

Table 5: CNN architecture details (width multiplier = 3)

Number

of Cells

Max. Long-Range

Link Candidates (tc)
Depth Width Multiplier

3

[10,30,50]

[40,60,90]

[70,90,130]

[100,120,170]

[130,150,210]

31 3

3

[11,31,51]

[42,62,92]

[72,93,133]

[103,123,173]

[133,153,212]

40 3

3

[11,31,52]

[43,63,93]

[73,95,135]

[104,124,176]

[134,154,214]

49 3

3

[12,32,52]

[44,64,95]

[76,96,136]

[106,126,178]

[135,156,216]

64 3

H. Additional Results for DenseNet-type
CNNs/MLPs

All results below are for DenseNet-type CNNs/MLPs.

H.1. Results on synthetic data

In this section, we design a few synthetic experiments

for MLP experiments to verify that our observations in Sec-

tion 4.2 hold for diverse datasets. Specifically, we design

three datasets – Seg20, Seg30, and Circle20 (or just Circle).

Fig. 10(a) illustrates the Seg4 dataset where the range [0. 1]
is broken into 4 segments. Similarly, Seg20 (Seg30) breaks

down the linear line into 20 (30) segments. The classification

problem has two classes (each alternate segment is a single

class).

Fig. 10(b) shows the circle dataset where a unit circle is

broken down into concentric circles (regions between circles

make a class and we have two total classes). The details of

these datasets are given in Table 6. Of note, we have used

the ReLU activation function for these experiments (unlike

ELU used for MNIST).

iX

iX

1
4

2
4

3
4

1

1
4

2
4

3
4

1

0

0iY

1iY

(a) Seg4

1
4

2
4

3
4

1

1
4

2
4

3
4

1

0

0iY

1iY

2iX

1iX

(b) Circle4

Figure 10: Illustration of synthetic datasets Seg4 and Circle4:

(a). Seg20 (Seg30) dataset is similar to Seg4, but divides the

[0, 1] range into 20 (30) segments. (b). Circle (or Circle20)

dataset is similar to Circle4, but divides a unit circle into 20

concentric circles.

For the above synthetic experiments, we once again con-

duct the following experiments: (i) We explore the impact of

varying #Params and NN-Mass on the test accuracy. (ii) We

demonstrate how LDI depends on NN-Mass and #Params.

Test Accuracy As shown in Fig. 11(a, b, c) and Fig. 11(d,

e, f), NN-Mass is a much better metric to characterize the

model performance of DNNs than the number of parameters.

Again, we quantitatively analyze the above results by gener-

ating a linear fit between test accuracy vs. log(#Params) and

log(NN-Mass). Similar to the MNIST case, our results show

that R2 of test accuracy vs. NN-Mass is much higher than

that for #Params.

Layerwise Dynamical Isometry Fig. 12 shows the LDI

results for the Circle20 dataset. Again, higher NN-Mass

leads to higher initial singular value. Moreover, NN-Mass is

better correlated with LDI than #Params. Hence, this further

emphasizes why networks with similar NN-Mass (instead of

#Params) result in a more similar model performance.

H.2. Impact of Varying NN-Density

NN-Density (ρavg) is defined as the average cell-density

(ρc, see Definition 3) across all cells in a DNN. As a base-

line, we show that NN-Density cannot predict the accuracy

of models with different depths. We train different deep

networks with varying NN-Density (see Table 3 models in

Appendix G). Fig. 13 shows that shallower models with

higher density can reach accuracy comparable to deeper

models with lower density (which is quite reasonable since

the shallower models are more densely connected compared

to deeper networks, thereby promoting more effective infor-

mation flow in shallower CNNs despite having significantly

fewer parameters). However, NN-Density alone does not

identify models (with different sizes/compute) that achieve

similar accuracy: CNNs with different depths achieve com-

parable test accuracies at different NN-Density values (e.g.,
although a 31-layer model with ρavg = 0.3 performs close

to 64-layer model with ρavg = 0.1, a 49-layer model with

ρavg = 0.2 already outperforms the test accuracy of the

above 64-layer model; see models P, Q, R in Fig. 13). There-

fore, NN-Density alone is not sufficient.

H.3. Varying width multiplier on CIFAR-10

We now explore the impact of varying model width. In

our DenseNet setup, we control the width of the models

using width multipliers (wm)8 [37, 6]. The above results are

for wm = 2. For lower width CNNs (wm = 1), Fig. 14(a)

shows that models in boxes U and V concentrate into the

buckets W and Z, respectively (see also other buckets). Note

that, the 31-layer models do not fall within the buckets (see

blue line in Fig. 14(b)). We hypothesize that this could

be because the capacity of these models is too small to

reach high accuracy. This does not happen for CNNs with

higher width. Specifically, Fig. 14(c) shows the results for

wm = 3. As evident, models with 6M-7M parameters

achieve comparable test accuracy as models with up to 16M

parameters (e.g., bucket Y in Fig. 14(d) contains models

ranging from {31 layers, 6.7M parameters}, all the way to

{64 layers, 16.7M parameters}). Again, for all widths, the

goodness-of-fit (R2) for linear fit between test accuracy and

8Base #channels in each cell is [16,32,64]. For wm = 2, cells will have

[32,64,128] channels per layer.

Table 6: Description of our generated Synthetic Datasets

Dataset name Description: Training Set, i ∈ [1, 60000]; Test Set, i ∈ [1, 12000]

Seg20 Feature: [Xi, Xi], Label: Yi, Xi = sample(1
20 [
 i

20�,
 i
20� + 1]),

Yi =
 i
20�mod2

Seg30 Feature: [Xi, Xi], Label: Yi, Xi = sample(1
30 [
 i

30�,
 i
30� + 1]),

Yi =
 i
30�mod2

Circle (Cir-

cle20)

Feature: [X1i, X2i], Label: Yi, X1i = Li ∗ cos(rand_num), X2i =
Li ∗ sin(rand_num), Li = sample(1

20 [
 i
20�, Yi =
 i

20�mod2

(a) Linear: Seg=20 (b) Linear: Seg=30 (c) Circular: Circle20

(d) Linear: Seg=20 (e) Linear: Seg=30 (f) Circular: Circle20

Figure 11: Synthetic results: (a, b, c) Models with different #Params achieve similar test accuracy across all synthetic datasets.

(d, e, f) Test accuracy curves for the same set of models come closer together when plotted against NN-Mass.

Figure 12: Synthetic results (Circle20 datasets): Mean singu-

lar value of Ji,i−1 is much better correlated with NN-Mass

than with #Params.

log(NN-Mass) achieves high values (0.74-0.90 as shown in

Fig. 15 in Appendix H.4).

H.4. R2 of CIFAR-10 Accuracy vs. NN-Mass

Fig. 15 shows the impact of increasing model widths on

R2 of linear fit between test accuracy and log(NN-Mass).

H.5. Comparison between NN-Mass and Parameter
Counting for CNNs

For MLPs, we have shown that NN-Mass significantly

outperforms #Params for predicting model performance. For

CNNs, we quantitatively demonstrate that while parameter

counting can be a useful indicator of test accuracy for models

with low width (but still not as good as NN-Mass), as the

width increases, parameter counting completely fails to pre-

dict test accuracy. Specifically, in Fig. 16(a), we fit a linear

model between test accuracy and log(#Params) and found

Figure 13: CIFAR-10 Width Multiplier wm = 2: Shallower

models with higher density can reach comparable accuracy

to deeper models with lower density. This does not help since

models with different depths achieve comparable accuracies

at different densities.

that the R2 for this model is 0.76 which is slightly lower

than that obtained for NN-Mass (R2 = 0.84, see Fig. 16(b)).

When the width multiplier of CNNs increases to three, pa-

rameter counting completely fails to fit the test accuracies of

the models (R2 = 0.14). In contrast, NN-Mass significantly

outperforms parameter counting for wm = 3 as it achieves

an R2 = 0.90. This demonstrates that NN-Mass is indeed a

significantly stronger indicator of model performance than

parameter counting.

H.6. Results for CIFAR-100

Results for CIFAR-100 dataset are shown in Fig. 17. As

evident, several models achieve similar accuracy despite hav-

ing highly different number of parameters (e.g., see models

within box W in Fig. 17(a)). Again, these models get clus-

tered together when plotted against NN-Mass. Specifically,

models within box W in Fig. 17(a) fall into buckets Y and

Z in Fig. 17(b). Hence, models that got clustered together

for CIFAR-10 dataset, also get clustered for CIFAR-100. To

quantify the above results, we fit a linear model between

test accuracy and log(NN-Mass) and, again, obtain a high

R2 = 0.84 (see Fig. 17(c)). Therefore, our observations

hold true across multiple image classification datasets.

H.7. Results for ImageNet (DenseNet setup)

For ImageNet, we create several DenseNet-type CNNs

containing four cells and total depth ∈ {48, 56, 60, 64, 68}
layers, and width multiplier wm ∈ {1.5, 2}. Due to lack

of resources, we trained these models on ImageNet dataset

for 60 epochs. Fig. 18(a) shows the test accuracy of these

CNNs vs. total #Params, while Fig. 18(b) shows the test

accuracy vs. NN-Mass. As evident, although the model

sizes are very different (e.g., model X is 3M parameters

larger than model W; see other arrows also), the accuracy

is quite similar. Once again, the models cluster together

when plotted against NN-Mass (e.g., see clusters for models

{W,X}, {Y,Z}, and {P,Q} in Fig. 18(b)). Note that, the

accuracies do not saturate (similar to other CIFAR-10 and

CIFAR-100 results in Fig. 5, 14, 17 and Fig. 18(c,d) in next

section): Cluster {Y,Z} achieves 4% lower Top-1 accuracy

(red points in Fig. 18(a,b)) than cluster {W,X}, whereas

within each cluster, the models are merely 0.2% and 0.7%
away from each other. Same observation holds for Top-5

accuracy (blue points in Fig. 18(a,b)). Finally, models {P,Q}

cannot be compared in accuracy against {Y,Z} since they

have different width (recall that Proposition 2 requires the

models within the same cluster to have both same width and

NN-Mass). We have provided the wm = 1.5 points to show

that NN-Mass works for ImageNet across multiple widths.

Hence, our ideas scale to the ImageNet dataset.

H.8. Results for depthwise separable convolutions

Recent works are heavily influenced by depthwise sep-

arable convolutions (DSConv). To demonstrate that NN-

Mass works with DSConv, we take our current DenseNet

setup (i.e., layer-by-layer convolutions with channels con-

nected via random skip connections) and replace all convo-

lutions with MobilenetV2 Expansion Blocks (1x1 conv →
3x3 DSConv → 1x1 conv) [28]. Random skip connections

connect input channels across various Expansion Blocks.

Fig. 18(c) shows test accuracy vs. #Params of CNNs with

DSConv on CIFAR-10. Again, even though many models

have different #Params, they achieve a similar test accu-

racy. On the other hand, when the same set of models are

plotted against NN-Mass, their test accuracy curves cluster

together tightly, as shown in Fig. 18(d), with a significantly

higher goodness-of-fit (R2 = 0.97) than that for #Params

(R2 = 0.5). This demonstrates that NN-Mass can be used

to quantify topological properties of diverse/heterogeneous

CNNs with regular convolutions, DSConv, pointwise conv.

H.9. Results for Floating Point Operations (FLOPS)

All results for FLOPS (of CNN architectures in Ta-

bles 3, 4, and 5) are shown in Fig. 19. As evident, mod-

els with highly different number of FLOPS often achieve

similar test accuracy. As shown earlier, many of these CNN

architectures cluster together when plotted against NN-Mass.

H.10. NN-Mass for directly designing compressed
architectures

Our theoretical and empirical evidence shows that NN-

Mass is a reliable indicator for models which achieve a

similar accuracy despite having different number of layers

and parameters. Therefore, this observation can be used for

directly designing efficient CNNs as follows:

• First, train a reference big CNN (with a large number

of parameters and layers) which achieves very high

Figure 14: DenseNet-type CNNs for low- (wm = 1) and high-width (wm = 3) models: (a, b) Many models with very

different #Params (boxes U and V) cluster into buckets W and Z (see also other buckets). (c, d) For high-width, we observe a

significantly tighter clustering compared to the low-width case. Results are reported as the mean of three runs (std. dev. ∼
0.1%).

Figure 15: Impact of varying width of DenseNet-type CNNs: (a) Width multiplier, wm = 1, (b) wm = 2, and (c) wm = 3.

As width increases, the capacity of small (shallower) models increases and, therefore, the accuracy-gap between models of

different depths reduces. Hence, the R2 for linear fit increases as width increases.

accuracy on the target dataset. Calculate its NN-Mass

(denoted mL).

• Next, create a completely new and significantly smaller
model using far fewer parameters and layers, but with a

NN-Mass (mS) comparable to or higher than the large

CNN. This process is very fast as the new model is

created without any a priori training. For instance, to

design an efficient CNN of width wc and depth per cell

dc and NN-Mass mS ≈ mL, we only need to find how

many skip connections to add in each cell. Since, NN-

Mass has a closed form equation (i.e., Eq. 2), a simple

search over the number of skip connections can directly

determine NN-Mass of various architectures. Then, we

select the architecture with the NN-Mass close to that

of the reference CNN. Unlike current manual or NAS-

based methods, our approach does not require training

of individual architectures during the search.

• Since NN-Mass of the smaller model is similar to that of

the reference CNN, our theoretical as well as empirical

results suggest that the newly generated model will lose

only a small amount of accuracy, while significantly

reducing the model size. To validate this, we train the

new, significantly smaller model and compare its test

accuracy against that of the original large CNN.

Directly designing compressed DenseNet-type CNNs for
CIFAR-10. We train our models for 600 epochs on the

CIFAR-10 dataset (similar to the setup in DARTS [17]).

Table 1 (main paper) summarizes the number of parameters,

FLOPS, and test accuracy of various CNNs. We first train

two large CNN models of about 8M and 12M parameters

with NN-Mass of 622 and 1126, respectively; both of these

models achieve around 97% accuracy. Next, we train three

significantly smaller models: (i) A 5M parameter model

with 40 layers and a NN-Mass of 755, (ii) A 4.6M parameter

model with 37 layers and a NN-Mass of 813, and (iii) A

31-layer, 3.82M parameter model with a NN-Mass of 856.

We set the NN-Mass of our smaller models between

750-850 (i.e., within the 600-1100 range of the manually-

designed CNNs). Interestingly, we do not need to train
any intermediate architectures to arrive at the above ef-

ficient CNNs. Indeed, classical NAS involves an initial

“search-phase” over a space of operations to find the architec-

tures [40]. In contrast, our efficient models can be directly

designed using the closed form Eq. 2 of NN-Mass (as ex-

plained in the beginning of this section), which does not

involve any intermediate training or even an initial search-

phase like prior NAS methods. As explained earlier, this is

possible because NN-Mass can identify models with similar

performance a priori (i.e., without any training)!

Figure 16: NN-Mass vs. parameter counting for DenseNet-type CNNs. (a) For wm = 2, log(#Params) fits the test accuracy

with an R2 = 0.76. (b) For the same wm = 2 case, log(NN-Mass) fits the test accuracy with a higher R2 = 0.84. (c) For

higher width (wm = 3), parameter counting completely fails to fit the test accuracy of various models (R2 = 0.14). (d) In

contrast, NN-Mass still fits the accuracies with a high R2 = 0.9.

Figure 17: DenseNet-type CNNs: Similar results are obtained for CIFAR-100 (wm = 2). (a) Models in box W have highly

different #Params but achieve similar accuracy. (b) These models get clustered into buckets Y and Z. (c) The R2 value for

fitting a linear regression model is 0.84 which shows that NN-Mass is a good predictor of test accuracy. Results are reported as

the mean of three runs (std. dev. ∼ 0.2%).

As evident from Table 1 (main paper), our 5M param-

eter model reaches a test accuracy of 97.00%, while the

4.6M (3.82M) parameter model obtains 96.93% (96.82%)

accuracy on the CIFAR-10 test set. Clearly, all these accu-

racies are either comparable to, or slightly lower (∼ 0.2%)

than the large CNNs, while reducing #Params/FLOPS by

up to 3× compared to the 11.89M-parameter/3.63G-FLOPS

model. Moreover, DARTS [17], a competitive NAS baseline,

achieves a comparable (97%) accuracy with slightly lower

3.3M parameters. However, the search space of DARTS

(like all other NAS techniques) is very specialized and uti-

lizes many state-of-the-art innovations such as depth-wise

separable convolutions [6], dilated convolutions [36], etc.

On the contrary, we use regular convolutions with only

concatenation-type skip connections in our work and present

a theoretically grounded approach. Indeed, our current objec-

tive is not to beat DARTS (or any other technique), but rather

underscore the topological properties that should guide the

a

2.2 M
3 M

b dc

3% gap

~1% gap

0.7% gap1.5 M 4% gap0.2% gap

Figure 18: More results for DenseNet-type CNNs. (a,b) ImageNet: (a) Models {P,Q}, {W,X}, and {Y,Z} have very different

#Params but similar test accuracy. (b) When plotted against NN-Mass, the models with similar NN-Mass and accuracy cluster

together. (c,d) CIFAR-10 with DSConv: Again, models with similar NN-Mass achieve similar accuracy but have quite different

#Params/layers.

efficient architecture design process. Ultimately, this the-

oretical knowledge (and its extensions to other kinds of

networks) can help us drastically reduce the search space of

NAS by directly removing architectures that are unlikely to

improve accuracy.

A note on hyper-parameter (e.g., initial learning rate)
optimization. Note that, throughout this work, we opti-

mized the hyper-parameters such as initial learning rate for

the largest models and then used the same initial learning

rate for the smaller models. Hence, if these hyper-parameters

were further optimized for the smaller models, the gap be-

tween the accuracy curves in Figures 14, 17, 19, etc., would

reduce further (i.e., the clustering on NN-Mass plots would

further improve). Similarly, the accuracy gap between com-

pressed models and the large CNNs would reduce even more

in Table 1 if the hyper-parameters were optimized for the

smaller models as well. We did not optimize the initial

learning rates, etc., for the smaller models as it would have

resulted in an explosion in terms of number of experiments.

Hence, since our focus is on topological properties of CNNs,

we fixed the other hyper-parameters as described above.

Figure 19: Models with highly different number of FLOPS achieve similar test accuracies. The CNN architectures are the

same as those used in Figures 5, 14, and 17. The pattern for FLOPS is very similar to that for the number of parameters.

Hence, these results show that models with both highly different number of parameters and FLOPS can achieve similar test

accuracy. Again, these models cluster together when plotted against NN-Mass.

