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We provide additional details and analysis of our ap-
proach in this supplementary material. In Section 1, we pro-
vide additional details about our network architecture. We
analyse the impact of sub-pixel shifts in the input images for
MFSR in Section 2, while the impact of training dataset for
real world SR is analysed in Section 3. Section 4 provides
a qualitative analysis of the impact of our training loss (3)
used to train our networks on the BurstSR dataset. Addi-
tional qualitative comparison with existing super-resolution
approaches are provided in Section 5

1. Network Architecture

Here, we provide additional details about our burst
super-resolution network architecture.
Encoder: The encoder module maps the packed RAW im-
age b̃i to a 64 dimensional feature embedding using a con-
volution layer. The resulting feature map is processed by 9
residual blocks, before being passed to another convolution
layer which expands the feature dimensionality to 512. An
illustration of the Encoder module is provided in Figure 1.
Weight Predictor: The weight predictor module computes
the un-normalized element-wise fusion weights for each
aligned feature embedding ẽi. It first projects the feature
embeddings ẽi and ẽ1 to 64 dimensional feature maps ẽpi
and ẽp1 respectively, using a convolution layer with shared
weights. Additionally, the weight predictor module also ex-
tracts flow features f̂i using the flow vectors fi. The mod-
ulo 1 of the flow vectors, fi mod 1, is first passed through
a convolution layer, followed by a residual block to obtain
64 dimensional flow features f̂i. The flow features f̂i, the
projected feature embedding ẽpi , and the residual ẽpi − ẽp1
are then concatenated along the channel dimension, and
passed through a convolution layer. The output 128 dimen-
sional feature map is processed by 3 residual blocks, be-
fore being passed to a final convolution layer which predicts
raw element-wise fusion weights w̃. An illustration of the
weight predictor module is provided in Figure 2.
Decoder: The decoder module projects the merged feature
map ê to a 64 dimensional feature space. The projected fea-
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Figure 1. The network architecture employed for the Encoder
module E.

PSNR ↑ LPIPS ↓ SSIM ↑
Ours 38.61 0.084 0.941
No Shifts 37.00 0.106 0.920
Single Image 36.42 0.123 0.913

Table 1. Impact of sub-pixel shifts in the input burst for MFSR.
Results are shown on the synthetic test set.

PSNR ↑ LPIPS ↓ SSIM ↑
Ours 47.52 0.031 0.983
Only Synthetic 44.52 0.081 0.967
Only BurstSR 47.14 0.037 0.981

Table 2. Impact of fine-tuning on real data

tures are then passed through 5 residual blocks, before being
passed to the sub-pixel convolution layer, which upsamples
the feature map by a factor 2s. The sub-pixel convolution
layer first increases the feature dimensionality to 22s232 us-
ing a convolution layer. The feature vectors at each spatial
location are then re-arranged into a 2s×2s×32 map to ob-
tain a 32 dimensional feature map with 2s times higher res-
olution compared to the input. The upsampled feature map
is then processed by 4 residual blocks, before being passed
to a convolution layer which predicts the output RGB im-
age. An illustration of the Decoder module is provided in
Figure 3.

2. Impact of input shifts
Here, we investigate the importance of having sub-pixel

shifts in the input images for MFSR. We train and evaluate
a baseline network No Shifts on synthetic bursts generated
without any simulated camera motion. That is, all the im-
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Figure 2. The network architecture employed for the Weight Predictor module W .
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Figure 3. The network architecture employed for the Decoder module D.

ages in the burst are identical except having different inde-
pendent noise. We also include our SISR baseline for com-
parison. While the No Shifts network can exploit the burst
images in order to obtain better denoising, its performance
improvement over the SISR baseline is limited to < 0.6 dB
(see Table 1). In contrast, our approach obtains a significant
improvement of 1.61 dB in PSNR over No Shifts when op-
erating on burst with sub-pixel shifts. These results show
that the majority of performance gains of our approach over
the SISR baseline is obtained by effective fusion of infor-
mation contained in the different aliased samplings of the
scene.

3. Impact of training dataset

We analyse the impact of pre-training our model on the
synthetic data, as well as fine-tuning on the real data. We

compare our approach with two baselines, i) a network
Only Synthetic trained using only the synthetic data, and
ii) a network Only BurstSR trained using only the real-
world BurstSR dataset. The results on the BurstSR valida-
tion set are shown in Table 2. The network trained only
using synthetic data fails to generalize to the real world im-
ages, obtaining a PSNR of 44.52 dB. In contrast, the net-
work trained from scratch on BurstSR performs much bet-
ter with a PSNR of 47.14 dB. The best results are obtained
when combining both the strategies: pre-training first us-
ing large scale synthetic data, and finetuning the resulting
network on real data.

4. Impact of our training loss

In this section, we analyze the impact of our training
loss, defined in Eq. (3) in the main paper, which is used
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to train our model on the real-world BurstSR dataset. Our
loss aligns the network prediction to the ground truth image
in order to handle spatial misalignments between the input
burst and the ground truth. Furthermore, it also handles the
color mismatch between the input-ground truth pair by es-
timating the color mapping function between the two. We
compare the network trained using our loss (3) with a net-
work trained using direct pixel-wise loss without perform-
ing any explicit spatial alignment and color space correc-
tion. Additionally, we also include a network trained only
on synthetic data for comparison. The results of this anal-
ysis on the BurstSR validation set are shown in Figure 4.
Compared to using direct pixel-wise loss, the network train-
ing using our loss (3) can generate sharper images with bet-
ter details.

5. Qualitative Examples
Here, we provide additional qualitative comparison of

our approach with the approaches described in Section 6.2
of the main paper; (i) Single Image baseline, (ii) Deep-
Joint [2]+RRDB [3], and (iii) HighRes-net [1]. Visual ex-
amples from the BurstSR test set are shown in Figure 5.
Compared to the other methods, our approach can best re-
construct the high frequency image details with high fidelity
to the high-resolution ground truth.
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Only Synthetic Direct Pixel-wise loss Our loss (3) HR Reference
Figure 4. Qualitative comparison of a network trained on BurstSR dataset using our training loss (3) with a network trained using direct
pixel-wise loss on the BurstSR validation set. A network trained only on the synthetic dataset is also included for comparison. Note that
there is a color shift between the predictions of the networks, as the networks are trained using different output color spaces. Hence, we
encourage the reader to focus on image details, e.g. sharp edges, presence of artifacts and not on the color space differences.

4
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Figure 5. Qualitative comparison of our approach with existing super-resolution approaches on the BurstSR test set.
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