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1. Introduction
In the supplemental, we include 1. Further details about

the Euro-PVI dataset (in Section 2). 2. Further details of our
Joint-β-cVAE and additional evaluation (in Section 3).

In particular, in Section 2 we provide further details of
the sensor setup, adding to the information in Section 3 of
the main paper and also clarify the collection process of the
Euro-PVI dataset. To further highlight the diversity of ego-
vehicle - pedestrian (bicyclist) interactions in dense urban
scenes, we include additional qualitative examples of the
interactions in the Euro-PVI dataset in Fig. 8.

In Section 3, we elaborate the deviation of the ELBO for
our Joint-β-cVAE approach (c.f . Eq. (5) in the main paper)
and provide additional architectural details of our Joint-β-
cVAE model (c.f . Sec. 5 in the main paper). Additionally,
we also provide details of conditioning our Joint-β-cVAE
model on visual features (c.f . Table 3 in the main paper),
evaluation using ADE and FDE metrics with sample sizes
of N={3, 20} (Tables 5 and 6), evaluation using the KDE
NLL metric of models transferred from nuScenes [6] to
Euro-PVI (Table 7) and evaluation of models trained both
on nuScenes and Euro-PVI on nuScenes (Table 8). We also
provide qualitative examples to further highlight the effec-
tiveness of Joint-β-cVAE model in capturing ego-vehicle -
pedestrian (bicyclist) interactions in Fig. 9.

2. Further Details about the Euro-PVI dataset

Further Details of Sensor Setup for Euro-PVI. The Euro-
PVI dataset was recorded from a vehicle equipped with a
lidar (Velodyne HDL-64E) mounted over the roof, which
captures point clouds with a frequency of 10Hz. The vehi-
cle also includes front-facing camera(s) installed behind the
windshield which have a similar point of view as the driver.
The cameras capture images at a resolution of 1280×806,
and a frequency of 10Hz. Images are calibrated to remove
distortion. This setup is adequate for capturing ego-vehicle -
pedestrian (bicyclist) interactions as most interactions hap-

pen in front of the vehicle. Further, all sensors are registered
to a common frame coordinate system inside the vehicle.
Each data point has a corresponding position/pose from an
on-board high performance GPS/IMU, and all are times-
tamped and synchronized. Such a setup also allows for the
use of mapping services e.g. OpenStreetMap.

Examples of Interactions in the Euro-PVI dataset. We
provide additional examples of interactions in the Euro-PVI
dataset in Fig. 8 with five example interactions between the
ego-vehicle and pedestrians (bicyclists) to highlight the di-
versity of interactions. Analogous to the Fig. 2 in the main
paper, we also include theL2 norms of the velocity and accel-
eration to illustrate the effect of interactions on the pedestrian
(bicyclist) trajectories – which again highlights the need to
model such ego-vehicle - pedestrian (bicyclist) interactions
for accurate pedestrian (bicyclist) trajectory prediction.

3. Further Details of our Joint-β-CVAE and
Additional Evaluation

We now provide additional details of our Joint-β-cVAE
approach. We first detail the derivation of the ELBO (Eq. (5)
in the main paper). Following this, we provide the details
of the network architecture and the hyperparameters used in
the Joint-β-cVAE model.

Details of the ELBO. From Eq. (2) in the main paper, the
joint probability of the future trajectories of the agents in the
scene can be expressed as,

pθ(Y|X)

=

∫ n∏
i

pθ(yi|Z≤i,Y<i,X)pθ(zi|Z<i,Y<i,X) dZ.

(6)

Using the joint posterior as defined in Eq. (3) in the main



paper, the joint probability above can be expressed as,

pθ(Y|X)

=

∫ n∏
i

pθ(yi|Z≤i,Y<i,X)
pθ(zi|Z<i,Y<i,X)

qφ(zi|Z<i,X,Y)

qφ(zi|Z<i,X,Y) dZ.

(7)

Therefore, the log-likelihood of the joint distribution is,

log(pθ(Y|X))

= log

(
n∏
i

Eqφ
(
pθ(yi|Z≤i,Y<i,X)

pθ(zi|Z<i,Y<i,X)

qφ(zi|Z<i,X,Y)

))

=

n∑
i

log

(
Eqφ
(
pθ(yi|Z≤i,Y<i,X)

pθ(zi|Z<i,Y<i,X)

qφ(zi|Z<i,X,Y)

))
.

(8)

Now, using Jensen’s inequality and introducing the β term
to weigh the KL-divergence term (DKL) as in [17] gives us
the ELBO in Eq. (5) of the main paper,

log(pθ(Y|X)) ≥
∑
i

Eqφ log(pθ
(
yi|Z≤i,Y<i,X)

)
− β

∑
i

DKL
(
qφ(zi|Z<i,X,Y)||pθ(zi|Z<i,X)

)
.

Additional Architectural Details. We model the posterior
distribution (qφ) using LSTMs with 128 hidden neurons.
The attention over each of the previously sampled zj ∈ Z<i
and xj ∈ X,yj ∈ Y is modeled using fully connected lay-
ers with 64 hidden units. Similarly, the prior, pθ is modeled
using an LSTM with 128 hidden units and the attention over
each of the previously sampled zj ∈ Z<i and xj ∈ X is
modeled using fully connected layers with 64 hidden units.
The decoder is also modeled using an LSTM with 128 hid-
den units. We use a latent space of 32 dimensions. We find
that β value of [0.08, 0.12] works well in practice and helps
us learn representative latent spaces. We use the Adam [46]
optimizer with a learning rate of 3×10−3 with a exponential
decay of 0.9999.
Details of Conditioning on Visual Features. In Table 3 in
the main paper, we report results on our Euro-PVI dataset
where our Joint-β-cVAE model is additionally conditioned
on visual features. We use both the RGB camera images
and lidar point clouds. In detail, we use a 256 × 256 crop
of the camera image and a 5 meter× 5 meter bird eye view
rendering of the lidar point cloud both centered at the pedes-
trian (bicyclist). The latent space of our Joint-β-cVAE is
additionally conditioned on these visual features using a
simple VGG-16 [47] like neural network. We see that the
performance of our Joint-β-cVAE further improves, because
the camera image and bird eye view lidar provides important

contextual information e.g. physical obstacles in the vicinity
of the pedestrian (bicyclist) which can have a significant
impact on the trajectory of the pedestrian (bicyclist).

Additional Metrics on Euro-PVI. Here, we additionally
report for Trajectron++ [37] and our Joint-β-cVAE, the av-
erage (euclidean) displacement error (ADE) at t+ {1, 2, 3}
seconds for N = 20 samples in Table 5 and both the final
(euclidean) displacement error (FDE, equivalent to the Best
of N error in Table 2,3 of the main paper) and average (eu-
clidean) displacement error (ADE) at t+ {1, 2, 3} seconds
for N=3 samples in Table 6. The results are consistent with
the findings in Table 2,3 of the main paper where our Joint-β-
cVAE outperforms Trajectron++ [37] for both sample sizes
N={3, 20}.
Additional Metrics on Transferring from nuScenes to
Euro-PVI. While in Table 4 (in the main paper), we re-
port only the Best of N metric, in Table 7, we additionally
report the KDE NLL metric. Similar to the observations with
the Best of N metric, observe a considerable drop in perfor-
mance as measured by the KDE NLL metric in comparison
to the performance of the models when they are both trained
and evaluated on Euro-PVI. Again, this provides additional
evidence that the distribution of trajectories and interaction
patterns in Euro-PVI is significantly different compared to
nuScenes.

Transferring from Euro-PVI to nuScenes. In Table 4 (in
the main paper), we show that models trained (only) on
nuScenes [6] do not perform well when evaluated on Euro-
PVI. On the other hand, in Table 8, we show that training
both on Euro-PVI and nuScenes can improve performance
on nuScenes. In particular, we consider the more challeng-
ing setting we provide a shorter observation of 1 second to
our Joint-β-cVAE. The performance on nuScenes improves
because Euro-PVI also contains significant pedestrian (bi-
cyclist) - pedestrian (bicyclist) interactions in addition to
vehicle - pedestrian (bicyclist) interactions.

Further Qualitative Examples. To further validate our
Joint-β-cVAE approach for modeling complex interactions
in dense urban scenarios, we provide additional qualitative
examples of predictions on the Euro-PVI dataset in Fig. 9.
We compare the predictions of our Joint-β-cVAE approach
to that of Trajectron++ [37] using the Best of N =20 sam-
ples. In Fig. 9 (top left) we see that our Joint-β-cVAE model
correctly predicts that the pedestrian stays on the sidewalk
and waits for the ego-vehicle to pass. Similarly, in Fig. 9
(top right) our Joint-β-cVAE model correctly predicts that
the pedestrian crosses the street in front of the ego-vehicle.
In Fig. 9 (middle left) our Joint-β-cVAE model correctly pre-
dicts that the bicyclist yields to the on-coming ego-vehicle.
In Fig. 9 (middle right) our Joint-β-cVAE model correctly
predicts that the bicyclist continues straight ahead and does
not attempt to cross the street due to the on-coming ego-



Interactions FDE N=20 ↓ ADE N=20 ↓
Method P-P P-V t+ 1 sec t+ 2 sec t+ 3 sec t+ 1 sec t+ 2 sec t+ 3 sec

Trajectron++ [37] X X 0.09 0.28 0.54 0.05 0.13 0.24
Joint-β-cVAE (Ours) X X 0.09 0.27 0.51 0.05 0.12 0.23

Table 5. Additional metrics on Euro-PVI with N=20 samples. P-P and P-V: whether pedestrian - pedestrian or pedestrian - ego-vehicle
interactions are modeled.

Interactions FDE N=3 ↓ ADE N=3 ↓
Method P-P P-V t+ 1 sec t+ 2 sec t+ 3 sec t+ 1 sec t+ 2 sec t+ 3 sec

Trajectron++ [37] X X 0.18 0.53 1.01 0.09 0.22 0.42
Joint-β-cVAE (Ours) X X 0.17 0.51 0.99 0.09 0.22 0.41

Table 6. Additional metrics on Euro-PVI with N =3 samples. P-P and P-V: whether pedestrian - pedestrian or pedestrian - ego-vehicle
interactions are modeled.

Interactions Best of N=20 ↓ KDE NLL ↓
Method P-P P-V t+ 1 sec t+ 2 sec t+ 3 sec t+ 1 sec t+ 2 sec t+ 3 sec

Trajectron++ [37] X – 0.10 0.35 0.63 -1.07 0.15 1.45
Trajectron++ [37] X X 0.10 0.35 0.63 -1.04 0.14 1.42

Joint-β-cVAE (Ours) X – 0.10 0.33 0.60 -1.51 -0.09 1.22
Joint-β-cVAE (Ours) X X 0.10 0.33 0.61 -1.56 -0.10 1.31

Table 7. Transferring models trained on nuScenes to Euro-PVI (see also Table 4 in the main paper).

Training Best of N=20 ↓ KDE NLL ↓
Method nuScenes Euro-PVI t+ 1 sec t+ 2 sec t+ 3 sec t+ 1 sec t+ 2 sec t+ 3 sec

Joint-β-cVAE (Ours) X – 0.01 0.14 0.31 -0.20 1.97 3.56
Joint-β-cVAE (Ours) X X 0.01 0.13 0.30 -0.27 1.64 2.92

Table 8. Evaluating models trained on both on nuScenes and Euro-PVI on nuScenes (only pedestrian - pedestrian interactions are modeled).

vehicle. In Fig. 9 (bottom left) our Joint-β-cVAE model
correctly predicts that the pedestrian crosses the street and
the ego-vehicle yields to the pedestrian. Similarly, in Fig. 9
(bottom right) our Joint-β-cVAE model correctly predicts
that both pedestrians cross the street (while avoiding col-
lisions) and the the ego-vehicle yields to the pedestrians.
These examples show that our Joint-β-cVAE model can suc-
cessfully capture the effect of interactions on the multi-modal
distribution of pedestrian trajectories in the latent space.
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Figure 8. Examples of interactions in the proposed Euro-PVI dataset. Spikes in the magnitude (L2 norm) of acceleration resulting from
interactions are marked. Top row: the pedestrian attempting to cross the road yields to the on-coming ego-vehicle as it has right of way.
Second row: the ego-vehicle yields to the pedestrians as they are at a crosswalk and thus have the right of way. Third row: the pedestrian
crossing the street in front of the ego-vehicle slows down after meeting an acquaintance and the ego-vehicle yields to the pedestrians and
waits for them to cross the street. Fourth row: the bicyclist slows down to let the ego-vehicle pass due to the narrow street. Fifth row: the
bicyclist crosses in front of the ego-vehicle and the ego-vehicle yields to the bicyclist.



Figure 9. Qualitative examples on the Euro-PVI dataset. We compare the Best of N = 20 samples for Trajectron++ (red) and our
Joint-β-cVAE (blue).


