
Supplementary Material for ‘Towards Part-Based Understanding of RGB-D
Scans’

In this supplemental material, we detail our network ar-
chitecture in Section 1; in Section 2, we provide details of
our baselines designs; in Section 4, we provide specifica-
tions of parts that we used in our experiments; in Section 5,
we additionally provide more quantitative results, visualize
examples of part priors combinations for each main category
and examples of our predictions compared to ground-truth.

1. Network Architecture Details

We detail our network architecture specification in Ta-
bles 3-4. Table 3 describes the layers for encoding the de-
tected objects to a feature code. The feature code is then
input to a decoder which predicts the semantic part struc-
ture, as detailed in Table 5; here, the output of the last layer,
lin3, represents a tuple of children latent codes, which
predict part prior weights, as specified in Section 3.4 of the
main paper. The final part refinement is then described in
Table 4. Our volumetric object encoder and part refinement
are fully convolutional, while the semantic part structure
prediction operates on the latent feature representations of
shapes and parts with MLP structure.

mAP@25 (↑)
Method chair table cab. bkshlf bed bin avg

MLCVNet + StructureNet 45.7 25.7 19.8 50.0 36.4 53.0 38.4
RevealNet 70.3 40.6 90.5 87.2 22.7 20.6 55.3

Ours 78.4 47.2 90.5 77.8 22.7 72.4 64.8

Table 1: Evaluation of instance completion on
Scan2CAD [1]. We evaluate object completion as a
union of predicted part decompositions, in comparison with
state-of-the-art instance completion [4] and the union of
StructureNet [5] parts as instances.

2. Additional Baseline Training Details
In all our experiments in comparison with state of the

art, we leveraged a combination of various approaches. For
the task of Semantic Part Completion, we performed scan
completion with SG-NN [3] and object detection with ML-
CVNet [8]. Our UNet baseline is developed as a baseline
without any semantic part structure or geometric part prior
inference; it consists of only a 3D voxel encoder (four con-
volutional blocks consisting of 3D convolutions (with 16, 32,
64, 128 output channels) using Group Normalization and
ReLU activation) and 3D voxel decoder (five convolutional
blocks consisting of 3D transposed convolutions (with 128,
64, 32, 16, 1 output channel(s), equipped with “add” skip
connections) and a 3D convolution, using Group Normaliza-
tion and ReLU activation) with 45 output feature channels,
corresponding to binary masks for each possible part type,
and trained with a binary cross entropy loss. The UNet
bottleneck has a spatial resolution of 4 × 4 × 4. Without
the explicit part structure representations, this UNet base-
line tends to predict noisy part masks, or part types from
incorrect classes which remain functionally different.

Note that for experiments with StructureNet [5], we used
the same experimental setup as described in their original pa-
per, training different models for each class category. Since
StructureNet operates in the canonical space of the objects,
we provided our predicted object orientations from our ap-
proach to guide the StructureNet predictions.

3. Comparison to Sung et al. 2015
We compare with the approach of Sung et al. [7] on their

benchmark for shape completion of chairs and tables. [7]
follows a leave-one-out approach by training on all but one
left-out shape; our approach is trained on PartNet objects

Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

StructureNet [5] 0.019 0.089 0.048 0.032 0.069 0.105 0.061 0.049 18.5 1.0 10.1 16.8 6.8 12.1 10.9 12.8
Ours 0.029 0.089 0.055 0.037 0.058 0.081 0.058 0.048 27.6 8.0 17.3 20.9 19.8 28.7 20.4 22.6

Table 2: Evaluation on semantic part completion on Scan2CAD [1] with ground truth 3D object detection (oriented 3D
bounding boxes) as input.



Encoder Input Layer Type Input Size Output Size Kernel Size Stride Padding

conv0 scan occ. grid Conv3D (1, 32, 32, 32) (16, 16, 16, 16) (5, 5, 5) (2, 2, 2) (2, 2, 2)
gnorm0 conv0 GroupNorm (16, 16, 16, 16) (16, 16, 16, 16) - - -

relu0 gnorm0 ReLU (16, 16, 16, 16) (16, 16, 16, 16) - - -
pool1 relu0 MaxPooling (16, 16, 16, 16) (16, 8, 8, 8) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv1 pool1 Conv3D (16, 8, 8, 8) (32, 8, 8, 8) (3, 3, 3) (1, 1, 1) (1, 1, 1)

gnorm1 conv1 GroupNorm (32, 8, 8, 8) (32, 8, 8, 8) - - -
relu1 gnorm1 ReLU (32, 8, 8, 8) (32, 8, 8, 8) - - -
pool2 relu1 MaxPooling (32, 8, 8, 8) (32, 4, 4, 4) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv2 pool2 Conv3D (32, 4, 4, 4) (64, 2, 2, 2) (5, 5, 5) (2, 2, 2) (2, 2, 2)

gnorm2 conv2 GroupNorm (64, 2, 2, 2) (64, 2, 2, 2) - - -
relu2 gnorm2 ReLU (64, 2, 2, 2) (64, 2, 2, 2) - - -
pool3 relu2 MaxPooling (64, 2, 2, 2) (64, 1, 1, 1) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv3 pool3 Conv3D (64, 1, 1, 1) (128, 1, 1, 1) (1, 1, 1) (1, 1, 1) (0, 0, 0)

gnorm3 conv3 GroupNorm (128, 1, 1, 1) (128, 1, 1, 1) - - -
relu3 gnorm3 ReLU (128, 1, 1, 1) (128, 1, 1, 1) - - -
flat0 node feature Flatten (128, 1, 1, 1) (128) - - -

Table 3: Layer specification for detected object encoder.
Child decoder Input Layer Type Input Size Output Size

lin0 node feature Linear 128 1280
relu0 lin0 ReLU 1280 1280

reshape0 relu0 Reshape 1280 (10, 128)
node exist reshape0 Linear (10, 128) (10, 1)

concat0 (reshape0, reshape0) Concat. (10, 128), (10, 128) (10, 10, 256)
lin1 concat0 Linear (10, 10, 256) (10, 10, 128)
relu1 lin1 ReLU (10, 10, 128) (10, 10, 128)

edge exist relu1 Linear (10, 10, 128) (10, 10, 1)

mp (relu1, edge exist, reshape0) Mes. Passing (10, 10, 128), (10, 10, 1), (10, 128) (10, 384)
lin2 mp Linear (10, 384) (10, 128)
relu2 lin2 ReLU (10, 128) (10, 128)

node sem relu2 Linear (10, 128) (10, #classes)

lin3 relu2 Linear (10, 128) (10, 128)
relu3 lin3 ReLU (10, 128) (10, 128)

Table 4: Layer specification for decoding an object into its semantic part structure.
Prior refiner Input Layer Type Input Size Output Size Kernel Size Stride Padding

concat0 (prior, scan occ. grid) Concat. (1, 32, 32, 32), (1, 32, 32, 32) (2, 32, 32, 32) - - -
conv0 concat0 Conv3D (2, 32, 32, 32) (8, 32, 32, 32) (3, 3, 3) (1, 1, 1) (1, 1, 1)

bnorm0 conv0 BatchNorm (8, 32, 32, 32) (8, 32, 32, 32) - - -
relu0 bnorm0 ReLU (8, 32, 32, 32) (8, 32, 32, 32) - - -
conv1 relu0 Conv3D (8, 32, 32, 32) (16, 32, 32, 32) (3, 3, 3) (1, 1, 1) (1, 1, 1)

bnorm1 conv1 BatchNorm (16, 32, 32, 32) (16, 32, 32, 32) - - -
relu1 bnorm1 ReLU (16, 32, 32, 32) (16, 32, 32, 32) - - -
conv2 relu1 Conv3D (16, 32, 32, 32) (8, 32, 32, 32) (3, 3, 3) (1, 1, 1) (1, 1, 1)

bnorm2 conv2 BatchNorm (8, 32, 32, 32) (8, 32, 32, 32) - - -
relu2 bnorm2 ReLU (8, 32, 32, 32) (8, 32, 32, 32) - - -
conv3 relu2 Conv3D (8, 32, 32, 32) (1, 32, 32, 32) (1, 1, 1) (1, 1, 1) (0, 0, 0)
add3 (prior, conv3) Add (1, 32, 32, 32), (1, 32, 32, 32) (1, 32, 32, 32) - - -

sigmoid3 add3 Sigmoid (1, 32, 32, 32) (1, 32, 32, 32) - - -

Table 5: Layer specification for final part mask refinement.

that do not intersect with any of the evaluation instances. Our
approach outperforms [7], with Chamfer Distance of 0.77
and 0.76 in comparison with 0.86 and 0.85 of [7] on chairs
and tables, respectively. We show additional qualitative
comparisons in Figure 1.

4. Part Types

In Figure 2, we visualize all part types which we trained
on. Note that the classes ’cabinet’ and ’bookshelf’ share the
same set of parts, so we use the same part types and priors.



Figure 1: Qualitative comparison with Sung et al. [7] on their
benchmark for shape completion. The larger missing regions
(chair legs, table leg) are challenging, and [7] struggles to fit
the correct structures, whereas our strong priors on semantic
part structure and geometric part priors provide a coherent
shape prediction.

5. Additional Results
Additional Quantitative Results In Table 1 we addition-
ally evaluate object instance completion using an mAP@25
metric, in comparison to state-of-the-art RevealNet [4] and a
combination of MLCVNet [8] with StructureNet [5]. Addi-
tionally, in Table 2, we evaluate our approach with ground
truth 3D detection, i.e., ground truth oriented 3D bounding
boxes for each object in the scene. Under ground truth de-
tection, our structural part priors enable more robust part
decomposition than StructureNet [5].

Additional Part Prior Visualizations We show addi-
tional examples of computed part priors for each object class
category in Figure 3. All priors are visualized with three
level-sets.

Additional Qualitative Semantic Part Completion Re-
sults Figure 4 shows additional examples of our predic-
tions compared with ground-truth. Our method predicts
meaningful part completion across a variety of object cate-
gories.



Figure 2: Part specification for the parts used in our approach. Note that ‘cabinet’ and ‘bookshelf’ classes have the same set of
parts.



Figure 3: Visualization of various part priors.



Figure 4: Additional qualitative results for our method on ScanNet [2] scenes and ground truth from Scan2CAD [1] and
PartNet [6].
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