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1 Architecture and Training Details

The overall pipeline is discussed in section 3 and figure 2 of the main paper.
Here we give additional details about architecture, loss functions, and training
setup.

1.1 Single-object completion

The object-completion model is an encoder-decoder with gating and skip con-
nections.

The encoder is a 3× 3, 32−filter convolution followed by five residual layers
as shown in figure 1a. 2 × 2 average-pooling is used for downsampling. The
layers have 32, 64, 128, 256, and 256 channels, respectively. The final 4× 4× 256
image is flattened to a length-4096 vector and then bottlenecked to dimension
β with a fully-connected layer. In our experiments, β = 256. To condition on
class, we concatenate another size-β vector by feeding a 1-hot class vector into a
single fully-connected layer (equivalently, we learn ncβ parameters).

The decoder begins with another fully-connected layer, which undoes the
bottleneck from dimension 2β back to 4096, and the resulting length-4096 vector
is reshaped back to 4×4×256. The decoder then passes through 6 residual layers
as shown in figure 1b. The number of channels for the six layers of the decoder
are (256,256,256,128,64,32). A 1× 1 convolution is used to match dimension on
the residual step. The decoding layer uses a gated convolution [21]: after the
skip input is concatenated on to produce an intermediate x, the gated output
is xσ(W (x)) where σ is the sigmoid activation and W is a 1× 1 conv with the
same number of channels as x.

The resulting 256× 256× 32 texture undergoes a final convolutional layer
consisting of: 3×3 conv with 32 filters, relu, 3×3 conv with 4 filters, corresponding
to the 3 color channels plus predicted signed-distance field, respectively.

The completion network is trained with 3 loss terms. First is a mask loss:
an L1 loss on the SDF output.
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Lm =
1

Npix
||Mpred − SDF (MGT )||1,

where Npix is the number of pixels, and MGT is the ground truth mask, and
SDF is the signed distance function (scaled by 1/256 so that it is roughly on
[−1, 1]).

We apply an L2 reconstruction loss:

Lpixel =
(
∑
MGT(x, y)(Ipred(x, y)− IGT(x, y))2∑

MGT(x, y)

Finally, we use a mask-modulated LPIPS loss [36]. Using a pretrained
VGG16 [37] as a baseline network φ, we use N = 5 layers:

Lperceptual =
1

N

N∑
i=1


∑

x,y(M i
GT(x, y))

∣∣∣φ̂i(Ipred)(x, y)− φ̂i(Igt)(x, y)
∣∣∣2
2∑

x,yM
i
GT(x, y)


where φ̂i is the activations of the ith layer of the network, normalized to have

Euclidean norm 1 along the channel dimension, and MGT is the ground-truth
mask downsampled to have the same spatial dimensions as φi.

The overall loss for the object predictor is

Lobject = λperceptualLperceptual + λpixelLpixel + λmaskLmask.

In our experiments, λperceptual = λpixel = 1 and λmask = 0.1

1.2 Adversarial fine-tuning and discriminator architecture

We apply an adversarial loss as a fine-tuning step to improve image quality. We
use a patchgan [38] with spectral normalization [39]. The discriminator is a
7 × 7 convolution with 32 filters, followed by five convolutional layers. These
five layers are 3× 3 convolutions with leaky relu activation with α = 0.2. All
but the first have stride 2. There is a final 1× 1 convolution with 1 filter, which
produces the patch score. There is no normalization applied.

The generator loss comprises GAN loss, feature matching [40] loss and
reconstruction loss:

Lgen = λadv
1

Npix

∑
(x,y)

−D(x, y)

+ Lobject + λfmLfm

where Lobject is the reconstruction loss described above and Lfm is a feature-
matching loss:

Lfm =
∑
i

1

Ni

∑
x,y

(
φ̂i(Ireal)− φ̂i(Igen)

)2
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(a) Object-completion encoder
layer. 2× 2 average pooling is used
for downsampling.
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(b) Object-completion decoder
layer. Bilinear upsampling is used.

Figure 1: Encoder and decoder layers for object completion
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Corruption FID score
6 pixel erosion 10.35
3 pixel erosion 9.41

None 9.04
3 pixel dilation 8.90
6 pixel dilation 9.14

Table 1: Effect on FID score of misaligning the mask by morphological dilation
or erosion. The effect is small, showing the model can handle some misalignment.

with φ̂i being features in the ith layer of the discriminator, normalized along the
channel dimension. In our experiments λfm = 1 and λadv = 3/4

The discriminator loss is

Ldisc =

{
1

Npix

∑
(x,y) max(1−D(x, y), 0) (real example)

1
Npix

∑
(x,y) max(1 +D(x, y), 0) (generated example)

where Npix is the number of pixels at the last layer of the discriminator and
D is the discriminator output.

1.3 Implementation and training details

Hyperparameters We train the uncropping networks for 800k train steps
with a learning rate of 1e− 4 with gradient clipping (norm 1). The generative
fine-tuning uses a learning rate of 1e− 5 for both generator and discriminator.
We alternate generator and discriminator training, each taking 3 steps. In total,
the fine-tuning runs for 800k cycles (2.4M total steps; 1.2M each discriminator
and generator). The background uncroppers are trained using the same hyper-
parameter settings as in [1] for 2.5M steps. All models are trained using Adam
with β1 = 0.5, β2 = 0.999, ε = 1e−8.

2 Ground truth and inferred masks

We train on the ground-truth masks, but can use any off-the-shelf object seg-
menter at inference time. We found that modern instance segmentation typically
finds a good mask, even on the cropped input. Occasional mistakes by the
segmenter can cause some errors, as shown in figure 2.

3 Impact of mask alignment

To compute the importance of the mask edge aligning with the object edge, we
ran our model on the whole dataset – all classes – using the ground-truth masks
in OpenImages. This validation set has approximately 177k images. Before
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Input GT Inferred Output Output

(GT Mask) (Inf Mask)

Figure 2: Comparing ground-truth to inferred instance segmentation. The
inferred (by an off-the-shelf instance segmentation network) masks are typically
very close to the ground-truth masks. The completed objects are also very
similar whether the ground-truth or inferred masks are used. The bottom-right
example shows an example artifact from an incorrect segmentation
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Input Completed Object

Standard Boundless Boundless composite FG-masked Boundless FG-masked composite

Figure 3: Example demonstrating foreground masking. When using a raw
Boundless as a background extrapolator, foreground-object pixels sometimes
smear beyond the extent of the completed object’s pixels; this is avoided by
masking the foreground object.

inference, we corrupt the mask by applying a morphological dilation or erosion
of 3 or 6 pixels, then compute the resulting FID score. The results are shown in
Table 1; the model is fairly robust to this kind of corruption. Interestingly, the
model is more robust to dilation than erosion.

4 Foreground object masking in the background
model

In section 3 of the main paper we describe a small change to training a Boundless
model: we mask out the object of interest before passing the given region to the
generator. Here we show the failure mode this avoids. In figure 3, an example
image extrapolation is shown. A Boundless model trained in the standard way
smears out the aircraft beyond the extent of the completed object. This in turn
causes haloing of texture from the foreground object in the composite. This
problem is avoided by not letting the background model see the foreground-object
texture in the first place.

5 Dataset statistics

After the filtering described in section 3.2 of the original, the number of examples
is about 1.7M. Train and validation split follows OpenImages [18]; the number
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of validation examples is about 60k. In validation experiments, each example is
repeated three times at different “uncrop ratios” – the fraction of the horizontal
extent of the instance that is present in the problem input. Additionally, we
must ensure that the method is robust to realistic input masks, such as those
that could be generated by an automatic method. So, we generated a subset
of our validation set whose masks are produced by an off-the-shelf segmenter.
For a number of classes (those in table 1 of the main paper), we begin with the
examples where we have a ground-truth annotation of that class. We run the
segmenter and keep only the largest mask (if there is one) it produces among
those of the class of interest, as long as confidence score is at least 0.5, and the
mask touches the right hand side of the image (within 4 pixels). This gives us
a subset of the dataset with automatically-generated masks from a number of
classes; the sizes of those classes can be seen in table 1 in the main paper.

6 Comparison details

We compare against three main techniques for image extrapolation: Bound-
less [1], Wide-Context Image Extrapolation[3], and Self-Supervised Scene De-
occlusion(SSSD) [2]. There are a few challenges in producing a fair comparison.

The Wide-Context architecture assumes a fixed uncrop ratio, which is not
compatible with our problem setup. Therefore we chose a fixed uncrop shape –
half the image. In comparisons with Wide Context, their network is always given
half of the ground-truth as input, irrespective of the displayed “input” column.
A second challenge with Wide Context is that, although we were able to train
their network successfully on Celeb-A-HQ, we did not find that it converged on
our dataset after 40000 training iteration with their reconstruction loss; therefore,
the results appear blurry, even though trained with another 40000 iterations of
the finetune stage with the adversarial loss. For this reason, we did not include
them in our numerical comparisons.

SSSD solves the deocclusion problem, which is similar but not identical to the
extrapolation problem considered in this paper. We used their model pretrained
on COCOA datasets and process the images so that the objects are cropped by
an adaptive square and resized to 256x256 as inputs. We also tried the model
trained on the same dataset for complete the background. But the model was
trained to inpaint the occluded regions instead of extrapolating the background,
so unsurprisingly the network does not perform well here. Hence we do our
best to produce a fairer comparison by using a Boundless model to provide the
background, compositing SSSD’s object on top. We found that, often, SSSD’s
output masks do not extend very far into the crop region or not at all; for this
reason, they often look similar to Boundless output.

7


