
– Supplemental Document –
Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction

Aljaž Božič1 Pablo Palafox1 Michael Zollhöfer2 Justus Thies1 Angela Dai1 Matthias Niessner1
1Technical University of Munich 2Facebook Reality Labs Research

In this supplemental document, we provide further
details about our proposed neural deformation graphs.
Specifically, we describe the network architectures in detail
(Sec. 1), give additional training information (Sec. 2), pro-
vide details on training duration and runtime of test-time de-
formation and geometry computation (Sec. 3), include more
ablations of our approach (Sec. 4), and present our capture
setup used for recording real non-rigid motion sequences
using Kinect Azure sensors (Sec. 5).

1. Network Architecture

Our method is composed of two learned components; the
neural deformation graph based on a 3D CNN (shown in
Fig. 1) and a set of multi-layer perceptrons (MLPs) which
are used to implicitly represent the surface (see Fig. 4).

Neural Deformation Graph. The neural deformation
graph implicitly stores the deformation graphs for each in-
put frame k. The underlying 3D CNN encoder takes a dense
643 SDF grid Sk as input and outputs the (3 + 3 + 1)N
dimensional vector, representing position, rotation (in axis-
angle format) and importance weight for each graph node
(N being the number of graph nodes). The input grid is
encoded to a spatial dimension of 43 and a feature dimen-
sion of 64 using 4 blocks of convolutional downsampling
with stride of 2, followed by 2 residual units (with ReLU
activation unit and batch norm). The downscale operation
is detailed in Fig. 2. We use a linear layer to convert the
43 · 64 features to dimension 2048. This feature vector is
input to two independent heads, each composed of 3 linear
layers with feature dimension of 2048 and a leaky ReLU
as activation unit with negative slope of 0.01 (no activation
function after the last linear layer). One head predicts graph
node rotations Rk of dimension 3N , while the other head
predicts graph node positions Vk and weights Wk (total
dimension of (3 + 1)N). We concatenate both predictions,
which results in a graph embedding of dimension 7N . For
all our experiments, we use N = 100.

Figure 1: Our neural deformation graph is represented as a
3D CNN which takes as input a 643 SDF grid and outputs
7N graph node parameters. Node parameters are predicted
via two independent heads, one for graph node positions
and weights, and the other for graph node rotations. The
architectures of the single computation blocks are detailed
in Fig. 2 and Fig. 3.

1

Figure 2: The downscale block used in our 3D CNN archi-
tecture (see Fig. 1) reduces the spatial dimension by 2.

Figure 3: Each linear block of the 3D CNN architecture (see
Fig. 1) applies a linear layer, followed by a leaky ReLU with
negative slope of 0.01.

Implicit Surface Representation For each graph node i,
we train a separate MLP fi that predicts the signed dis-
tance field around the node, as presented in Fig. 4. As
explained in the main paper, the complete shape geome-
try is reconstructed by warping each node’s local SDF us-
ing estimated node deformations and interpolating the local
SDFs using the estimated node interpolation weights (com-
puted from node radii and importance weights). Each MLP
takes a 3D position as input, and outputs an SDF value for
the given position. The position is represented with posi-
tional encoding [5] of dimension F = 30. To reconstruct
pose-dependent details, the MLP is conditioned on a pose
code. This D-dimensional pose code (D = 32 in our ex-
periments) is computed by inputting the current deforma-
tion graph predictions through a linear projection layer Πi

shown in Fig. 5. Thus, in total, the MLP takes an input of
dimension D+F , and using 8 linear layers with feature di-
mension of 32, it outputs the SDF value of the correspond-
ing node. There is a skip connection between the input and
the sixth linear layer, and a leaky ReLU with negative slope
of 0.01 is applied after each linear layer, as shown in Fig. 3.

In Tab. 1, we evaluate the influence of the pose codes
with respect to the reconstruction quality measured using
a Chamfer distance. The pose conditioning improves the
Chamfer distance by a large margin, which is also visible in
the qualitative comparison in Fig. 7.

Figure 4: We represent the surface of an object using an
implicit function (SDF) which is based on multi-layer per-
ceptrons (MLPs). Each graph node MLP takes as input a
(D + F)-dimensional vector (consisting of the pose code
and the sample position, represented with positional encod-
ing [5] in local coordinates) and outputs the SDF value.

Figure 5: To compute the sparse pose code of the graph, we
use a single linear projection layer that converts the graph
parameters of dimension 7N to a code of dimension D (we
use N = 100 and D = 32). This pose code is input to the
local MLP that represents the pose-dependent local surface.

2. Training Details

Our method’s training process is described in Sec. 3.4
of the main paper. In this section, we specify the sam-
pling strategy during training of both the neural deforma-
tion graph and the implicit surface representations (see vi-
sualization of samples in Fig. 6).

When training the neural deformation graph, we use
|Pun| = 3000 uniform point samples, |Pns| = 3000 near

2

Figure 6: We visualize the uniform samples Pun (green),
near surface samples Pns (red) and the surface samples Ps

(blue) for a slice of samples with z ∈ [−0.01, 0.01] at one
frame of the character sequence shown in the Fig. ?? of the
main paper.

surface point samples and |Ps| = 3000 surface point sam-
ples, sampled randomly for each batch from 100k pre-
processed point samples. For the graph coverage loss, we
apply an additional weight of 10.0 for interior point samples
(determined by the SDF sign).

To train our multi-MLP network that implicitly repre-
sents the surface, we use |Pun| = 1500 uniform point sam-
ples and |Pns| = 1500 near surface point samples. Note
that this reduced set of samples is applied to satisfy mem-
ory limits of our used GPU (Nvidia Geforce 2080Ti). We
use a truncation of 0.1 (in normalized units of the object
in the unit cube) for the signed distance field used for the
reconstruction loss.

Note, when interpolating the SDF grid for the node in-
terior loss, in the case that a graph node’s position is pre-
dicted outside the grid, we define the out-of-grid loss by
an `2-distance to the nearest bounding box corner. This en-
courages graph node positions to be always predicted inside
the shape’s bounding box.

3. Runtime Analysis

Our approach is trained independently (from scratch) for
every character sequence, optimizing our neural deforma-
tion graph to best fit the observed sequence. For our un-
optimized implementation, the optimization takes about 2

Figure 7: We compare our implicit reconstruction with pose
conditioning (middle) to without pose conditioning (left).
Pose conditioning clearly improves reconstruction perfor-
mance in regions of very strong deformation.

Approach Chamfer

Without pose conditioning 0.46
With pose conditioning 0.40

Table 1: Evaluation of the pose conditioning effect on
reconstructions on synthetic data using Chamfer distance
(×10−4).

days with a single Nvidia GeForce 2080Ti. The dense de-
formation field between any two frames in the sequence
is computed for (near) surface points by estimating skin-
ning weights w.r.t. all nodes and interpolating the frame-
to-frame motion of the nodes, which takes 0.02s for about
30k points. The mesh is extracted for every frame by sam-
pling 1283 grid sample points, predicting their SDF values
and executing Marching Cubes on the resulting SDF grid,
which takes about 3.70s per-frame.

4. Additional Ablations

In this section, we provide further ablations of our
method that evaluate the effect of pose conditioning, dif-
ferent graph sizes, and 3D CNN encoder variations.

Pose Conditioning. Our approach uses a pose-
conditioned multi-MLP formulation for the prediction
of an implicit surface at every frame, which helps to refine
local geometry details that are not captured properly by the
graph deformation. The benefits of pose conditioning over
not using any pose codes can be observed both qualitatively
(in Fig. 7) and quantitatively (in Tab. 1).

3

Approach EPE3D

Without Encoder (Direct Optimization) 25.07
Without Batch Norm 1.36

Graph with 30 nodes 1.71
Graph with 200 nodes 1.19

Ours: Encoder with Batch Norm + 100 nodes 1.16

Table 2: Evaluation of encoder and graph size variations on
synthetic data using 3D end-point-error (×10−2).

Graph Size. We use N = 100 graph nodes in our exper-
iments. This is just an upper limit though, since by opti-
mizing over graph node weights the method can eliminate
redundant nodes. In Tab. 2 we show that using only N = 20
graph nodes does not provide enough degrees of freedom to
fully represent deformations in our sequences and leads to
worse performance. On the other hand, using N = 200
nodes seems to be redundant compared to N = 100 nodes,
and does not lead to any performance improvement.

3D Encoder. We compare our 3D CNN encoder formu-
lation with direct parameter optimization, where instead of
optimizing over 3D CNN parameters we directly optimize
rotation, translation and weight node parameters indepen-
dently for every frame, using random initialization. As can
be seen in Tab. 2, the use of the encoder is very important
for the overall performance. One possible explanation is
that the encoder enables us to additionally enforce view-
point consistent predictions, as described in Section 3.2 in
the main paper. Furthermore, the inductive bias of the en-
coder considerably improves optimization convergence. We
also find that using batch normalization in the encoder ar-
chitecture leads to better performance.

Variance along Sequence Frames. We report the mean
and standard deviation of reconstruction and deformation
errors over different frames of our synthetic evaluation se-
quences in Tab. 3. Our method outperforms all baselines
w.r.t. both mean frame errors as well standard deviation of
the errors along the frames, which suggests that the geom-
etry and deformation estimation results of our approach are
consistent over the length of the sequences.

5. Real Data Capture Setup
In the main paper as well as in the supplemental video,

we demonstrate that our method performs well on real
data. To capture real-world non-rigid motion sequences, we
record with four Kinect Azure sensors as shown in Fig. 8.
All four sensors are connected to the same computer via
USB-C cables and are hardware-synced using a daisy-chain
configuration (connecting the trigger of the master camera
with the other 3 cameras in a chain). To avoid interference

Method Chamfer EPE3D

SIF [2] 1.12± 0.31 8.56± 5.09
LDIF [1] 2.41± 2.07 10.40± 6.73
OccupancyFlow [7] 53.83± 28.44 16.29± 5.83
MV DynamicFusion [6] 2.19± 1.73 3.06± 1.18
MV DF [6] + FlNet3D [4] 1.93± 1.54 2.55± 0.86
Robust L0 Tracking [3] 2.31± 1.60 2.50± 0.92

Ours 0.40± 0.07 1.16± 0.78

Table 3: We show quantitative comparisons with state-
of-the-art approaches, evaluating geometry using chamfer
distance (×10−4), and deformation using EPE3D (×10−2),
with corresponding standard deviations across different se-
quence frames.

between depth sensors, we set a delay of 160 microseconds
between different depth camera captures.

References
[1] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,

and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4857–4866,
2020. 4

[2] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T. Freeman, and Thomas Funkhouser. Learning shape
templates with structured implicit functions. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), October 2019. 4

[3] Kaiwen Guo, Feng Xu, Yangang Wang, Yebin Liu, and
Qionghai Dai. Robust non-rigid motion tracking and surface
reconstruction using l0 regularization. In Proceedings of the
IEEE International Conference on Computer Vision, pages
3083–3091, 2015. 4

[4] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d:
Learning scene flow in 3d point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 529–537, 2019. 4

[5] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. arXiv preprint arXiv:2003.08934, 2020. 2

[6] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dy-
namicfusion: Reconstruction and tracking of non-rigid scenes
in real-time. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 343–352,
2015. 4

[7] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Occupancy flow: 4d reconstruction by learn-
ing particle dynamics. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5379–5389,
2019. 4

4

Figure 8: We capture non-rigid motion using 4 Kinect Azure sensors, which are pre-calibrated and hardware-synced to
guarantee spatial and temporal coherence of depth captures. We capture depth images at resolution of 1024 × 1024, using
the highest available frame-rate of 15 FPS.

5

