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1. Additional baselines
We include 7 additional baseline comparisons using the four BREEDS [4] datasets. These baselines were not included in

the main paper due to lack of space. The comparisons are summarized in Table 1. We include several kinds of additional
baselines covering different possible supervised + self-supervised combinations, as well as of supervised contrastive loss use:

• ensemble (of Coarse/Coarse+ with MoCoV2): averaging the two models predictions (probabilities after softmax)

• cascade (of Coarse/Coarse+ with MoCoV2): classify into the max-scoring coarse classes Ycoarse using the coarse-
supervised model (with the linear classifier resulting from pre-training), and then use the self-supervised model (with
the LR classifier, Section 3.3 in the paper) for intra-class classification within the chosen coarse class (limiting the
target classes to the sub-classes of the predicted coarse class)

• concat (of Coarse/Coarse+ with MoCoV2): concatenating the features produces by the two models, and doing few-
shot classification via learning the logistic regression (paper Section 3.3) on the resulting concatenated features.

• Supervised Contrastive: Training with coarse labels Ycoarse using the Supervised Contrastive loss [3] replacing CE.

The ”Coarse”, ”Coarse+”, and ”MoCoV2” models used in ensemble, cascade, and concat combinations are as described in the
paper. As can be seen from the table, in all (the more challenging) all-way experiments ANCOR maintains a significant advan-
tage over the baselines, even ones combining (via an ensemble, a cascade, or a concat) separately trained coarse-supervised
and contrastive self-supervised models, and thus also using twice more learn-able parameters than ANCOR. This demon-
strates once again the importance of joint coarse-supervised and contrastive self-supervised training employed by ANCOR
and facilitated by the proposed angular normalization component enhancing the synergy between these two objectives.

∗Equal contribution

LIVING-17 NONLIVING-26 ENTITY-13 ENTITY-30
Method 5-way all-way 5-way all-way 5-way all-way 5-way all-way

ensemble(Coarse+, MoCoV2) 74.07 ± 0.67 34.02 ± 0.13 73.14 ± 0.71 33.23 ± 0.11 85.27 ± 0.57 36.39 ± 0.08 84.22 ± 0.6 34.56 ± 0.08

ensemble(Coarse, MoCoV2) 84.32 ± 0.62 36.39 ± 0.13 79.95 ± 0.65 34.31 ± 0.11 85.97 ± 0.59 34.03 ± 0.08 88.48 ± 0.55 34.49 ± 0.08

cascade(Coarse+,MoCoV2) 74.1 ± 0.66 34.04 ± 0.13 73.1 ± 0.7 33.23 ± 0.11 85.19 ± 0.57 36.38 ± 0.08 84.33 ± 0.6 34.57 ± 0.08

cascade(Coarse,MoCoV2) 88.27 ± 0.63 38.02 ± 0.14 84.66 ± 0.64 36.05 ± 0.11 86.39 ± 0.59 35.46 ± 0.07 90.02 ± 0.55 37.1 ± 0.08

concat(Coarse+,MoCoV2) 73.48 ± 0.66 33.4 ± 0.13 71.49 ± 0.71 31.28 ± 0.11 84.26 ± 0.59 35.64 ± 0.08 83.03 ± 0.62 33.5 ± 0.07

concat(Coarse,MoCoV2) 83.45 ± 0.63 35.89 ± 0.13 77.59 ± 0.67 32.48 ± 0.11 85.35 ± 0.6 33.89 ± 0.07 86.83 ± 0.57 33.82 ± 0.07

Supervised Contrastive [3] 86.49 ± 0.67 35.11 ± 0.12 84.54 ± 0.61 37.44 ± 0.11 87.08 ± 0.58 28.57 ± 0.15 88.86 ± 0.52 33.67 ± 0.17

ANCOR (ours) 89.23 ± 0.55 45.14 ± 0.12 86.23 ± 0.54 43.10 ± 0.11 90.58 ± 0.54 42.29 ± 0.08 88.12 ± 0.54 41.79 ± 0.08

Table 1. Additional baselines: evaluated using BREEDS [4] with 1-shot. The ”Coarse”, ”Coarse+”, and ”MoCoV2” models used in
ensemble and cascade combinations are as described in the paper. (1) ensemble: averaging the two models predictions (probabilities after
softmax); (2) cascade: classify into the max-scoring coarse classes Ycoarse using the coarse-supervised model (with the linear classifier
resulting from pre-training), and then use the self-supervised model (with the LR classifier, paper Sec. 3.3) for intra-class classification
within the chosen coarse class (limiting the target classes to its sub-classes); (3) concat: concatenate the feature vectors from the two
models and then apply few-shot classification as in the paper Sec. 3.3; (4) Same as Coarse+ using the Supervised Contrastive loss [3]
replacing CE.
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2. Sub-population Shift
The ’sub-population shift’ benchmark was proposed in [4] intended to evaluate how classification performance is affected

when the train classes and test classes consist of different (non-overlapping set of) sub-classes (eg. ‘Dog‘ class in training
consist of samples of ’Bloodhound’ and ’Pekinese’, while the test dogs are the ’Great Pyrenese’ and the ’papillon’). For
this purpose they propose two hand-crafted partitions for each of their datasets: named ’good’ and ’bad’, which represent
a less and a more adversarial partitioning respectively. We leverage this to create a task that is on one hand allows having
the same coarse classes in training and in testing (as in the task in Section 4.4.1), while still having the sub-classes of those
coarse classes non-overlapping (different) between the train and the test (as in the task in Section in 4.4.2). In other words,
in this scenario the test sub-classes are completely different from the training ones, and yet they share the same parent coarse
classes. Our evaluation on this task, provided in Table 2, shows that despite this challenging setting, ANCOR significantly
outperforms the strongest baseline by > 4% in the all-way test.

Good Bad 5-way all-way

Coarse+ 3 70.77 ± 0.74 36.65 ± 0.19

Coarse+ 3 73.44 ± 0.69 43.13 ± 0.22

ANCOR (ours) 3 74.99 ± 0.71 40.69 ± 0.20

ANCOR (ours) 3 77.32 ± 0.69 47.53 ± 0.22

Table 2. Sub-population Shift. Two hand-crafted partitions of the LIVING-17 dataset, created by [4], such that the test sub-classes are
different from the (unlabeled) training sub-classes, yet share the common coarse classes. ’Good’ and ’Bad’ represent a less and more
adversarial partitioning. Note that in practice these models train on half the data the models trained on LIVING-17 in the main paper have,
due to the partitioning.

3. Additional results for 800-epoch training
In this section we further examine the effect of longer training longer on the performance. As can be seen in Table 3,

following longer 800 epoch training ANCOR obtains significant gains in all the experimental settings. The most noticeable
gains are in the all-way tests, where we observe that the gap above the baselines grows with longer training. We attribute
this improvement to the contrastive component that is known to benefit from longer training [1, 2]. Interestingly, with longer
training the coarse baseline models have gained accuracy in the 5-way test, but lost accuracy in the all-way test (compared to
the 200 epochs performance). This supports our hypothesis that the coarse-classes supervised objective encourages reducing
intra-class variation, and as such, with the longer training, tends to decresae the distinction between fine-sub classes loosing
their discriminability within the coarse class. This again underlines the merits of our ANCOR approach that retains and
enhances the fine sub-classes discrimnability thus significantly benefiting from the longer training regime.

LIVING-17 NONLIVING-26 ENTITY-13 ENTITY-30
Method 5-way all-way 5-way all-way 5-way all-way 5-way all-way

Fine (upper-bound) 91.94 ± 0.44 64.66 ± 0.17 87.68 ± 0.50 54.42 ± 0.13 94.22 ± 0.34 64.30 ± 0.09 93.11 ± 0.38 61.70 ± 0.09

Fine+ (upper-bound) 90.25 ± 0.48 63.54 ± 0.17 86.27 ± 0.51 53.16 ± 0.14 91.99 ± 0.40 59.43 ± 0.09 91.03 ± 0.43 57.48 ± 0.09

MoCoV2 81.45 ± 0.61 46.65 ± 0.16 78.33 ± 0.65 42.08 ± 0.12 87.30 ± 0.53 48.97 ± 0.08 86.51 ± 0.56 46.77 ± 0.09

MoCoV2-ImageNet [2] 89.27 ± 0.57 51.60 ± 0.15 82.22 ± 0.66 43.32 ± 0.12 88.30 ± 0.55 45.52 ± 0.08 87.18 ± 0.58 42.23 ± 0.08

SWAV-ImageNet [1] 80.11 ± 0.63 39.30 ± 0.14 73.43 ± 0.67 33.06 ± 0.11 79.58 ± 0.62 33.36 ± 0.07 78.89 ± 0.64 31.16 ± 0.07

Coarse 89.04 ± 0.63 29.06 ± 0.23 84.72 ± 0.63 27.99 ± 0.18 82.66 ± 0.75 11.24 ± 0.08 90.09 ± 0.59 20.63 ± 0.12

Coarse+ 89.41 ± 0.61 33.07 ± 0.23 84.69 ± 0.59 32.07 ± 0.20 85.23 ± 0.63 22.85 ± 0.13 88.43 ± 0.55 28.33 ± 0.15

ANCOR (ours) 92.59 ± 0.47 58.15 ± 0.16 88.25 ± 0.52 49.38 ± 0.13 92.04 ± 0.44 50.72 ± 0.09 92.13 ± 0.44 50.85 ± 0.09

Table 3. Results for different baselines on the four BREEDS datasets. Every model was trained for 800 epochs.

4. Additional examples of ANCOR encoder B last layer activations
Additional examples of ANCOR encoder B last layer activations are provided in Figure 1, again illustrating an interesting

attention to objects learned by ANCOR despite not being provided with any location supervision during training.



Figure 1. Additional examples of ANCOR encoder B last layer activations.
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