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1. Additional Experimental Results

1.1. Uncertainty

Recent work has found that models become increasingly
less calibrated under distribution shift [6]. Motivated by this
problem, we also test whether AdaBN helps with calibra-
tion error on the target distribution. We use a simple and
popular measure of calibration: the Expected Calibration
Error (ECE) [3]. In Table 1 we show the ECE for AdaBN
on each dataset. We find that AdaBN substantially reduces
calibration error on the corruption benchmarks and Stylized
ImageNet, even cutting it in half in most cases.

Table 1: Expected Calibration Error (ECE) of AdaBN and
variants on each shifted dataset. AdaBN substantially re-
duces the ECE on the corruption datasets [4] and Stylized
ImageNet.

METHOD C-10-C TIN-C IN-C INV2 SIN

ORIGINAL 21.5 25.0 12.0 10.6 30.9
ADABN 11.3 15.2 5.2 10.3 12.9
ADABN + AUG 11.7 16.9 6.0 10.9 14.4

1.2. AdaBN on subsets of classes

We now provide additional results showing that applying
AdaBN to subsets of classes can hurt accuracy, but that this
is mitigated when one does not update the Batch Norm statis-
tics in some of the final layers. In Figure 1 we show the same
experiment as in Section 4.1, but this time for TinyImageNet
and TinyImageNet-C. The results are qualitatively similar
to those for CIFAR-10-C, though the difference between
excluding the first layers vs the last layers is less dramatic
for TinyImageNet-C.

1.3. The importance of batch information

A natural question is whether one can adapt feature align-
ment methods like AdaBN to a more restricted robustness
setting where we do not have access to more than a single

example at test time. A simple approach is to use normal-
ization methods other than Batch Norm to align the fea-
ture distributions, but which do not use batch information.
Two such methods are Group Norm [8] and Instance Norm
[7]. Group Norm [8] normalizes over spatial locations and
groups of multiple channels within a given layer. Instance
Normalization (IN) [7] was introduced for faster stylization.
It normalizes over spatial locations over each channel sep-
arately, but unlike Group Norm and Batch Norm does not
typically include learned affine parameters. We compared
models trained using these different normalization schemes
on CIFAR-10-C and TinyImageNet-C, along with the corre-
sponding uncorrupted validation sets, and show the results
in Table 2. In each case, we use the same architecture and
hyperparameters as before, with the only difference being
which normalization layer is used. For Group Norm, we test
different numbers of groups ranging from 1 to 16, and for
Instance Norm we test both with and without learned affine
parameters.

We find that the default robustness of the Batch Norm
model was much lower on CIFAR-10-C than the default
Instance Norm and Group norm models. However, after
applying AdaBN to the Batch Norm model, its robustness
ended up being higher than the other normalization meth-
ods, especially with the augmented version of AdaBN. The
results for TinyImageNet are more difficult to interpret be-
cause the validation accuracy for Group Norm and especially
Instance Norm are worse than for Batch Norm. Still, these
results suggest that batch information can be important for
improving robustness.

2. Further Discussion of Assumptions
Researchers have attempted to identify assumptions that

are sufficient for successful unsupervised domain adaptation.
One assumption that has been considered is covariate shift,
i.e. pS(y|x) = pT (y|x). Ben-David et al. [2] showed that
covariate shift is not sufficient for UDA, even when paired
with either (i) the assumption that pS(x) ≈ pT (x) or (ii) the
assumption that there is a classifier in the hypothesis class
with low error on both domains.

The failures we present can occur even under the covariate
shift assumption and even assuming there is no label shift
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(a) TinyImageNet Excluding First Layers

0.2 0.4 0.6 0.8 1.0
Fraction of Total Classes

0.56

0.58

0.60

0.62

0.64

Ac
cu

ra
cy

 o
n 

TI
N

Excluding Last 0
Excluding Last 1
Excluding Last 4
Excluding Last 16

(b) TinyImageNet Excluding Last Layers
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(c) TinyImageNet-C Excluding First Layers
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(d) TinyImageNet-C Excluding Last Layers

Figure 1: The effect of updating the Batch Norm statistics using AdaBN + Aug on different subsets of classes for TinyImageNet
and TinyImageNet-C. The results are qualitatively similar to those found in Figure 2 of the main paper.

Table 2: Comparing normalization methods on standard
robustness benchmarks. Group Norm and Instance Norm
both do worse than Batch Norm under distribution shift, even
when the standard test accuracy is comparable.

METHOD C-10 C-10-C TIN TIN-C

ORIGINAL MODEL 94.82 72.31 63.80 24.77
ADABN 92.84 83.63 60.32 40.11
ADABN + AUG 94.84 86.78 64.05 41.80
IN (NO AFFINE) 92.68 81.52 29.54 11.04
IN (AFFINE) 93.51 81.43 45.32 17.04
GN (1 GROUP) 92.53 76.76 56.45 22.14
GN (4 GROUPS) 93.32 78.15 59.34 23.18
GN (16 GROUPS) 93.85 81.68 58.11 22.91

(also known as prior shift or target shift). For shifted spatial
locations, this is immediately true because we just made
x2 = 0, when x2 didn’t depend on the label in the first
place. These two assumptions can also hold for the shifted
examples failure; in the simplest case, this is is true when
p(y = −1) = 1.

The covariate shift assumption is less clear with our fail-
ure modes on real data. Nevertheless, it should at least
approximately hold in these cases, and can be modified to
exactly hold. In particular, while both real shifts (black
border and data augmentation) can cut out some relevant
features, they rarely change the ground truth label.

3. Theoretical results
3.1. Target error bounds can be uninformative

Denote the target and source classification errors by εT (h)
and εS(h) respectively, and denote the optimal joint error
by λ := minh∈H εT (h) + εS(h). Ben-David et al. [1] show
that for any h ∈ H,

εT (h) ≤ εS(h) + λ+ |εT (h, h∗)− εS(h, h∗)| , (1)

where εS(h, h
∗) = Prx∼DS

[h(x) 6= h∗(x)] and
εT (h, h

∗) = Prx∼DT
[h(x) 6= h∗(x)]. Ben-David et al.

[1] also upper bound |εT (h, h∗) − εS(h, h∗)| in terms of a
distance dH∆H(DS , DT ) between DS and DT ,

dH∆H(DS , DT ) = sup
h∈H
|εT (h, h∗)− εS(h, h∗)| . (2)
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Many methods aim to minimize εS(h) and
dH∆H(DS , DT ). In practice λ is an unknown quan-
tity that depends on the true target labeling function, so most
feature alignment methods ignore it. However, this makes it
unclear whether this bound provides much of a guarantee
even for methods that were directly inspired by it.

We now show that even if one does make λ small, such
as by using a flexible class H of neural networks, then the
bound proved by Ben-David et al. [1] can be uninformative
for a different reason. In particular, when λ = 0 the bound
is equivalent to the triangle inequality. Specifically, when
λ = 0, this means that εT (h, h∗) = εT (h) and εS(h, h∗) =
εS(h). Hence, the bound in Equation (1) reduces to

εT (h) ≤ εS(h) + |εT (h)− εS(h)| , (3)

which is always true. Upper bounding this in terms of
dH∆H(DS , DT ) is then equivalent to:

εT (h) ≤ εS(h) + sup
h∈H
|εT (h)− εS(h)| , (4)

which is still uninformative.
Other generalization bounds have been proven, such as

by Johansson et al. [5], Zhao et al. [9], but these also don’t
explain why aligning the feature distributions helps in prac-
tice. Zhao et al. [9] essentially replace λ with a term that
captures the difference between the true source and target
labeling functions. Johansson et al. [5] prove a bound based
on the support of the source and target distributions that
explicitly accounts for the non-invertibility of the feature
representation. However, both bounds still include an un-
observable quantity that feature alignment methods ignore.
Neither paper explains why these unobservable terms should
be small in practice for such methods.
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