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1. Implementation details
1.1. Software Platform / hyperparameters for training

All experiments were conducted by eight-core Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz,
128GB RAM and an NVIDIA Titan XP. Learning rages of 0.001 and 0.0001 were used for training
FBI-Net and PGE-Net, respectively. We used Adam [8] optimizer and drop the learning rate by half
every ten epochs. Additionally, we used Pytorch [10] with CUDA 10.2 to implement FBI-Net and
PGE-Net, with mini-batch size as 1. For the Gaussian noise level estimation [5], the patch size is set
to eight.

1.2. Gaussian noise estimation [5] (Tensorized)

[5] is a PCA-based Gaussian noise level estimation algorithm, developed with an intuition that
image patches generated from a clean image often lie in a low-dimensional subspace. Thus, their core
idea is to find redundant dimensions of a noisy image for capturing noise component by carefully
eliminating the principal dimensions of a image. Namely, they start removing eigenvalues of a
covariance matrix of noisy patches from the largest value, and stop at the right time.

As described in [5, Algorithm 1], it is mainly composed of three steps. First, decompose a single
noisy image Y ∈ RN×N to generate vectorized patches with size d2. In second step, calculate the
eigenvalues S = {λi}d
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i=1 of the covariance matrix of patches. If eigenvalues are sorted in ascending
order, i.e., λ1 ≤ λ2 ≤ · · · ≤ λd2 , S can be represented as Sn ∪ Sp where Sn = {λi}mi=1 indicates a
set of eigenvalues for redundant dimensions and Sp = {λi}d
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i=m+1 indicates a set of eigenvalues for
the principal dimensions. Then, the last step of [5] is carefully finding a point that divides Sn and
Sp, and then calculating the noise variance with Sn. For this step, [5] proposed effective iterative
dimension selection procedure that stops iterations where mean and median of subset Sn are equal.
They theoretically verified that this stopping point is a right point to separate Sn and Sp. More
details about algorithm and theoretical justifications can be found in [5, Section 2]. The original
implementation is initialized with Sp = ∅ and Sn = S. By denoting the mean and median value of
the subset Sn as γ and ψ respectively, the difference between γ and ψ is iteratively calculated for
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finding outliers in the subset Sn. If γ 6= ψ, take out the largest value in the subset Sn and put it into
the subset Sp. This procedure is iterated until γ = ψ. Then, the final result of noise estimation is
obtained by

√
γ.

Algorithm 1 Gaussian Noise estimation [5] (Tensorized)
Require: A noisy image Y ∈ RN×N , Patch size d

. /* Step1: Decompose image */
1: Decompose a noisy image Y into vectorized multiple patches

{
yt
}s
t=1

with size d2 where
s = (N − d+ 1)
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2: u← 1
s

∑s
t=1(yt), Σy ← 1

s

∑s
t=1(yt − u)(yt − u)T

. /* Step2: Calculate the eigenvalues */
3: Calculate eigenvalues λi of Σy with ascending order λ1 ≤ λ2 ≤ · · · ≤ λd2

4: Λ ∈ Rd
2×d2 ← a diagonal matrix where Λii = λi

. /* Step3: Finding σ without iterative procedure */
/* Generate two lower triangular matrices */

5: AΛ ←A1 ·Λ (dot product)

6: Calculate a mean vector τ ∈ Rd
2

where τi = 1
ki

∑d2

j=1(AΛ)ij and ki is the number of nonzero elements in (AΛ)i

7: Aτ ← Diag(τ ) ·A1 (dot product)

/* Identifying the median value with the masking scheme */
8: Generate masking matrixMbig ∈ Rd

2×d2 andMsmall ∈ Rd
2×d2

where (Mbig)ij = 1{(AΛ)ij > (Aτ )ij} and (Msmall)ij = 1{(AΛ)ij < (Aτ )ij}

9: Generate counting vectors cbig ∈ Rd
2

and csmall ∈ Rd
2

where (cbig)i =
∑d2

j=1(Mbig)ij and (csmall)i =
∑d2

j=1(Msmall)ij

10: Generate a masking vectorm ∈ Rd
2

where mi = 1{(cbig)i == (csmall)i}.

11: σ ←
√

max(m� τ )

12: return σ

As we mentioned in Section 4.1 (manuscript), we replaced this iterative procedure in [5] with
tensor operations. It is straight-forward to change operations of first and second step to tensor
operations, but the last step is not. Thus, we mainly describe the last step. Before describing
the tensorized version of [5], we introduce a few more notations. Let’s define a lower triangular
matrix asA ∈ Rd

2×d2 and a specific lower triangular matrix which has 1 as all nonzero elements as
A1 ∈ Rd

2×d2 . Moreover, define M ∈ Rd
2×d2 as masking matrix and m ∈ Rd

2

as masking vector
such that Mij ∈ {0, 1} and mi ∈ {0, 1}. Diag(a) is the d2 × d2 diagonal matrix whose diagonal
elements are the elements of the vector a ∈ Rd

2

and � denotes element-wise multiplication.



As can be seen in Algorithm 1, instead of iterative procedure for calculating the mean value γ
and median value ψ, we generate two lower triangular matrices which can compute all possible
mean values and identify whether those mean values are median or not at once. For identifying
each mean value is a median or not, every possible mean values should be calculated and compared
with eigenvalues. Namely, the individual averages of the eigenvalues of each candidate of Sn are
computed first, and then each mean value is compared with the eigenvalues of that candidate. Thus,
firstly, we make a low triangular matrix AΛ which consists of candidates for Sn. For this, AΛ is
calculated by the dot product of A1 and eigenvalue matrix Λ. Considering only the non-zero element,
the first row represents the smallest Sn containing only λ1, and the last row represents the largest
Sn, i.e, S. Secondly, we calculate a mean vector τ and generate a low triangular matrix Aτ for
comparing with AΛ. By using AΛ, a mean vector τ consisting of every possible mean values is
calculated. Then, Aτ is calculated by the dot product of Diag(τ ) and A1. Note that the non-zero
elements in each row ofAτ all have the same value, and the single non-zero element in i-th row of
Aτ is the average value of the i-th row ofAτ . Namely, the non-zero elements of the i-th row ofAτ

are composed of i-repeats of the average of i-th row ofAτ .
Now, all possible mean values can be compared with corresponding eigenvalues at once. To

identify the median value, two masking matrices Mbig and Msmall are generated, derived from
conditions that the inequality for the above two lower triangular matrices are opposite. By comparing
two counting vectors, the final masking vector m is calculated. Since we assume the eigenvalues
are sorted with ascending order, the maximum value of m � τ is the final estimates for the noise
variance.

2. Detailed Experimental Results
2.1. Toy example for verifying the Section 5.2 (manuscript)

As we discussed in Section 5.2 (manuscript), whereas the accuracy of PGE-Net for estimating
σ is not high, the GAT+BM3D or BP-AIDE framework with the GAT-transformed images (using
underestimated σ̂ of PGE-Net) still shows great blind denoising performance. This somewhat counter-
intuitive can be explained by our empirical verification; We observed that the underestimation of
PGE-Net for σ is not a major issue in achieving that GAT-transformed image (with the estimated
parameters) has the stabilized noise variance close to 1. To verify this, consider the simple toy
example shown in Figure 1. We generated four different homogeneous image patches of size
256× 256 with four different pixel values (0.2, 0.7, 0.8, 0.3), respectively, and corrupted them with
a Poisson-Gaussian noise (α = 0.1, σ = 0.02) (Fig. 1a). Note that due to the source-dependence
of the noise, the four image patches have different noise levels as shown in Fig. 1b. Now, Fig. 1c
shows the GAT-transformed images with the estimated noise parameters from the PGE-Net ((α̂, σ̂)
for each image is given in Fig.1c), and Fig. 1d shows the corresponding noise of the GAT-transformed
images (obtained by subtracting the mean of each image). Notice that while σ̂ of PGE-Net is indeed
much smaller than the true σ, as in Table 3 (manuscript), Fig. 1d shows that the source-dependent
noise is almost removed after GAT, and the variance of the remaining noise gets very close to 1.
Note PGE-Net is trained exactly with this objective (Eq.(8) in manuscript), and we believe this
example clearly shows why running the BP-AIDE framework with the GAT-transformed images
(using underestimated σ̂ of PGE-Net) still shows great blind denoising performance.

2.2. Comparison with supervised trained methods in SIDD / DND

In this section, we additionally compare the performance of FBI-Denoiser with supervised trained
models such as UPI [4] and CycleISP [12]. As we mentioned in Introduction (manuscript), CycleISP
and UPI modeled in-camera processing pipeline (ISP) and achieved the state-of-the-art performance in



Figure 1. A toy example for Section 5.2 (manuscript)

SIDD and DND dataset by generating noisy and clean pairs of raw-RGB or sRGB images from clean
synthetic sRGB images. Their approaches are trained in a supervised way with pairs of generated
pairs. Moreover, they used an additional input channel which is composed of per-pixel estimates
of the noise standard-deviation for a noisy image. Note the information about Poisson-Gaussian
noise parameters is required for getting these per-pixel estimates. However, they assumed that the
information about noise parameters of test noisy images is given in both training and evaluation phase
which is unrealistic in the real-world application. In evaluation, they used true noise parameters which
are given by DND and SIDD websites [1, 2]. Moreover, in training, as can be seen in [4, Section 3.1],
they specify the sampling range of noise parameters (α, σ) based on the maximum and minimum
values of the noise parameters of test noisy images, and further define more specific sampling ranges
by performing regression fitting with the noise parameters of the test noisy images. Namely, they
used the additional information about noise characteristics in both training and evaluation phase.

Thus, we recalculated their results in more realistic settings which the information about noise
characteristics is not given in training or evaluation. Additionally, we measured the performance of



Table 1. PSNR(dB)/SSIM on SIDD and DND dataset. Red and blue denote the highest and second highest
results, respectively, among models except supervised trained models.

Type Algorithm
SIDD DND

Raw sRGB Raw sRGB
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

unsup

GAT+BM3D 48.52 0.9800 34.61 0.8789 47.53 0.9761 37.98 0.9203
N2V 46.30 0.9760 32.85 0.8470 45.41 0.9688 35.82 0.9022

D-BSN 37.16 0.8390 24.07 0.4999 39.63 0.8642 30.23 0.7095
BP-AIDE (DND) - - - - 47.60 0.9732 38.60 0.9259

FBI-D (DND) - - - - 47.53 0.9706 38.56 0.9185
BP-AIDE (SIDD) 50.45 0.9900 37.91 0.9420 47.75 0.9770 38.79 0.9446

FBI-D (SIDD) 50.57 0.9900 38.07 0.9420 48.02 0.9787 38.98 0.9451

sup

UPI (25k, blind) with Liu [9] 47.89 0.9860 36.59 0.9280 46.96 0.9756 38.34 0.9450
UPI (25k) with Liu [9] 48.95 0.9870 37.15 0.9330 47.58 0.9756 38.92 0.9413

MCU-Net 48.80 0.9900 36.54 0.8750 - - - -
UPI (1M) - - - - 48.89 0.9820 40.17 0.9620

CycleISP (1M) 52.41 0.9930 39.47 0.9180 49.13 0.9830 40.50 0.9660

them when the number of training pairs is limited to 25000 (originally, 1 million) which is the same
number with training patches in FBI-Denoiser. Note that the training code of CycleISP is not available,
we only measured the performance of UPI in realistic settings, thus, we mainly analyzed the results
of UPI. Since the main difference between CycleISP and UPI lies in the detailed implementation of
data conversion step from sRGB to raw-RGB, we believe that results of CycleISP which is trained in
a realistic setting will have a similar tendency to the remeasured results of UPI.

The first realistic setting “UPI (25k) with Liu [9]” denotes the result of UPI which is trained with
the original sampling procedure of UPI, but evaluated with estimated noise parameters from Liu [9].
The more realistic setting “UPI (25k, blind) with Liu [9]” denotes the result of UPI which is trained
with a blind uniform sampling procedure (α ∈ [0, 0.162], σ ∈ [0, 0.06]) as in [7], and evaluated
with estimated noise parameters from Liu [9]. Note that the inference time for noise estimation is
additionally needed for UPI in these realistic settings.

The results of MCU-Net, UPI (1M), and CycleISP were taken from their original papers [3, 4, 12]
since their training takes too long. Note the result of UPI which is trained with 1 million noisy images
in SIDD is not reported since [4] only reports the DND evaluation results. As can be seen in Table
1, in realistic settings, the performance of UPI is significantly degraded. As a result, FBI-Denoiser
outperforms not only unsupervised trained methods but also supervised trained methods including
UPI (in realistic settings) and MCU-Net. Note that MCU-Net is also a strong baseline that ranked
high in the NTIRE 2020 Challenge on Real Image Denoising - Track1: rawRGB. These results imply
that FBI-Denoiser which is trained solely based on single noisy images is enough to compete with
supervised trained methods, and given sufficient noisy images, the performance of FBI-Denoiser
could be further improved.

2.3. Experiments on the weak noise cases

Although we have shown that our FBI-Denoiser obtains the state-of-the-art denoising performance
in real-world noisy benchmark datasets which contain a mixture of various noise levels, the per-
formance of FBI-Denoiser is relatively low in weak noise cases as can be seen (0.01, 0.0002) case
of Fivek dataset in Table 5 (manuscript) and this performance degradation becomes severe as the
signal to noise ratio (SNR) increases. Note this performance degradation is caused by the original
loss function (Eq. 7 in manuscript) of BP-AIDE, not the PGE-Net and FBI-net we proposed. As we
described in Section 4.2 (manuscript), we followed the same procedure of BP-AIDE which uses the
loss function (Eq. 7 in manuscript) for training a denoiser. FC-AIDE and BP-AIDE achieve higher



performance than N2V by using additional information, the noisy pixel Zi, as can be seen in their
pixelwise affine denoiser and loss function (Eq. 5,7 in manuscript), but, it’s not always good to use
whole Zi. If the noise intensity is too strong, it may be better not to use Zi for training since Zi is are
too noisy. Thus, we believe that the process which decides how much Zi will be utilized based on
the noise intensity would be needed to get better performance. But, BP-AIDE and our FBI-Denoiser
set the range of slope coefficients a1(w; ·) as a single fixed range for all noisy images. This range is
set between 0 and a specific maximum value as can be seen in Section 5.1 (manuscript). Although
they show great performance in real-world noise benchmarks with only this fixed range of a1(w; ·),
their performance is limited in some noise cases due to the fixed range of slope coefficients a1(w; ·).
Thus, if a loss function that adaptively designates the range of slope coefficient a1(w; ·) according to
noise intensity is devised, we expect that overall performance in real-world noisy benchmark datasets
would be further enhanced. We left this as our future work.

2.4. Decision rules for the failure cases of Liu [9] and Foi [6] in BP-AIDE

As mentioned in Section 5.2 (manuscript), BP-AIDE has to set up rules for handling the extremely
small values of α̂ which are the failure cases of Liu [9] and Foi [6]. Two decision rules were suggested
in their source code; First, if α̂ < 1E − 7, set α̂ as 1 in both training and evaluation. Second, if
α̂ < 1E − 7, exclude its noisy image from the training. The best results among them are reported
in all experiments. Note that the performance deviation of BP-AIDE is relatively high due to the
estimation failure and its handling.

2.5. Inference time of noise estimation

We additionally measured the inference time according to the different size of patches. As seen in
Table 2, the inference time of Foi [6] and Liu [9] increases as the patch size increases. In particular,
the inference time of Liu [9] drastically increased when the patch size is doubled. On the other hand,
PGE-Net keeps the inference time almost constant. Thus, we verified that the efficiency of PGE-Net
outperforms other algorithms in all various sized patches.

Table 2. Experimental results of inference time of noise estimation

Dataset Patch size Foi [6] Liu [9] PGE-Net

Fivek
256x256 0.69 0.72 0.0017
512x512 2.5 1.8 0.0020

1024x1024 2.83 6.88 0.0023

2.6. Network architecture of PGE-Net

Table 3 compares the results of GAT+BM3D using estimated noise parameters from two PGE-
Nets which have the different number of layers. The experimental setting is same as ablation
studies on PGE-Net in Section 5.4 (manuscript), which uses the uniformly sampled noise parameters
(α ∈ [0, 0.162], σ ∈ [0, 0.06]). As can be seen in Table 3, the difference in performance between
3-layer and 1-layer is very small. Thus, it is highly likely that there will be a simpler and more
efficient network architecture than PGE-Net, which simply adopted three layer U-Net, but we did not
attempt to find the optimized architecture of PGE-Net and left it as our future work.

Table 3. Network architecture of PGE-Net
Algorithms PGE-Net (3 layer) PGE-Net (1 layer)

GAT+BM3D
PSNR/SSIM 38.72 / 0.9350 38.61 / 0.9340



2.7. Visualization Results on DND

We visualized an additional benchmark image in DND [11]. We clearly observe that FBI-Denoiser
and BP-AIDE achieve a superior performance in terms of both PSNR and SSIM compared with other
baselines. However, note FBI-Denoiser restored the detailed texture better than BP-AIDE with a
faster reference time.

Noisy GAT+BM3D

N2V D-BSN

BP-AIDE FBI-Denoiser

PSNR/SSIM 28.83/0.7725

29.29/0.7624 18.78/0.3015

32.70/0.9066 32.95/0.9071
Figure 2. Visualization results of DND
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