
A. Appendix

0 10 20 30 40 50 60 70 80 90 100

epoch

0

10

20

30

40

50

60

70

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

FixMatch on ImageNet with 10% Labels

baseline

baseline-teacher

EMAN

EMAN-teacher

Figure 4. The FixMatch accuracy with 10% labels

A.1. FixMatch

We re-implemented FixMatch in PyTorch, and followed
the exactly same hyperparameter settings as in the official
FixMatch [39] 1. The number of labeled (unlabeled) im-
ages in a batch is 64 (320). The loss weight for the su-
pervised (unsupervised) loss is 1.0 (10.0). The EMA mo-
mentum m = 0.999. The number of epoch is counted on
unlabeled images.

As discussed in [1, 24, 26], the EMA updated teacher
model can present more reliable results. We show the ac-
curacy curves of the teachers (with EMAN) for both base-
line FixMatch and FixMatch-EMAN on ImageNet valida-
tion in Figure 4. Although the baseline FixMatch did not
use the EMA-teacher framework, we can collect its EMA
updated model (both model parameters and BN statistics)
during training for the purpose of inference only. It can be
found that the EMA teacher indeed has higher and more
stable accuracy, especially during the former epochs. This
is the reason why we reformulate the baseline FixMatch to
EMA-teacher framework.

A.2. MoCo

We used the code and followed the exactly same settings
as in the official MoCo-v2 [10]2. When using EMAN, the
training will become less stable at the beginning, because
the whole network, including the normalization statistics, is
slowly updated, with momentum m = 0.999. In this case,
the warn-up learning rate schedule is more important. With-
out it, MoCo-EMAN will have worse performance in our
experiments. In addition, as seen in Figure 3 (b), the kNN
accuracy of MoCo-EMAN will have a slight decrease in the

1https://github.com/google-research/fixmatch
2https://github.com/facebookresearch/moco

last training epochs, because the learning rate is too small.
This behavior is quite consistent in our MoCo-EMAN ex-
periments, and the best model is usually at around 90%
training epochs. To avoid the decrease, we simply used the
90%-th epoch checkpoint for the evaluation of other down-
stream tasks. Another solution is to set the minimum learn-
ing rate to a not-too-small value, e.g. 0.001, in the cosine
learning rate schedule. These two strategies achieved very
close performances in our experiments.

In Figure 5 (a) and (b), we show the curves of loss and
instance discrimination accuracy of MoCo during training.
Although they do not directly relate to the actual representa-
tions power, they can help to understand what is happening
during training. It can be found that the training behaviors
are quite different between MoCo-ShuffleBN and MoCo-
EMAN. EMAN will make the self-supervised learning task
of MoCo more difficult, and lead to higher training loss
and lower instance discrimination accuracy. It suggests that
EMAN can better prevent the MoCo model from cheating,
and could potentially improve the representation power.

A.3. BYOL

We re-implemented BYOL in PyTorch, and followed
some hyperparameter settings as in the official BYOL [17]3.
The official implementation chooses different hyperparam-
eters for experiments of different numbers of epochs. To
be consistent, we set weight decay as 0.000001, and initial
EMA momentum as 0.98, for experiments of both 50 and
200 epochs. The initial learning rate was set as 0.9 (1.8) for
50 (200) epochs. In all BYOL experiments, the batch size
was 512 on a machine with 8 GPUs.

The training loss curves of BYOL are also shown in
Figure 5 (c). Similar to the observations from MoCo
curves, EMAN will make the self-supervised learning task
of BYOL more difficult, and result in higher training loss.
It suggests that EMAN can better prevent the BYOL model
from cheating, and could potentially improve the represen-
tation power.

A.4. Other Settings

ImageNet Sampling We sample 1% (10%) images per
class for the semi-supervised learning experiments of 1%
(10%) labels, which are 12,820 (128,118) images in total.

Linear and Finetuning Evaluation In addition to the
details in Section 5.2, weight decay = 0 and momen-
tum = 0.9 for linear evaluation, and weight decay =
0.0001, and momentum = 0.9 for finetuning. The
standard data augmentation (RandomResizedCrop and
RandomHorizontalFlip) was used during training.
At inference, the center 224×224 crop was used.

3https://github.com/deepmind/deepmind-research/tree/master/byol



0 10 20 30 40 50 60 70 80 90 100

epoch

6.5

7

7.5

8

8.5

9

9.5

10

lo
s
s

MoCo on ImageNet

ShuffleBN

BN

EMAN

(a)

0 10 20 30 40 50 60 70 80 90 100

epoch

0

10

20

30

40

50

60

70

80

90

100

to
p

-1
 a

c
c
u

ra
c
y
 (

%
)

MoCo on ImageNet

ShuffleBN

BN

EMAN

(b)

0 5 10 15 20 25 30 35 40 45 50

epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

lo
s
s

BYOL on ImageNet

SyncBN

BN

EMAN

(c)
Figure 5. (a) and (b) are the training loss and instance discrimination top-1 accuracy of MoCo, and (c) the training loss of BYOL.

kNN Evaluation Different from [45, 52], we did not use
the weighting mechanism. Instead, it was just a standard
kNN classifier with top k = 20 neighbors, where a query
will be classified to the majority class of neighbor samples.
The center 224×224 crop was used, also in the experiments
of Image Retrieval and Low-shot Classification.


