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1. Implementation Details
1.1. Network architecture

Our approach follows an encoder-decoder architecture
as shown in Figure 2 in the main paper. We adopt a Deep-
Residual-Unet(ResUNet) [11] architecture as the shared-
weight Siamese encoder, which downsamples and upsam-
ples the input image and outputs 32×H/4×W/4 embedded
feature maps. The image is first passed to a 7× 7, stride-2
convolution layer, followed by three pre-activation residual
blocks [7], each of which downsamples by 2. Reaching the
lowest resolution, the feature maps are upsampled by two
”up-convolution” layers. For each layer, the scale is set to 2
and a 3× 3 convolution is used.

We then efficiently compute pairwise extracted feature
maps using matrix multiplication and output a 4D correla-
tion volume as H/4×W/4×H/4×W/4. The following
decoders, as shown in Figure 1, processes the 4D correlation
volume, which is reshaped as (H/4×W/4)×H/4×W/4,
with two pre-activation residual blocks and uses two fully-
connected layers to map to a 360-dim distribution for each
angle. In total, our model contains ∼19M parameters, and
the regression baseline contains ∼23M parameters.

1.2. Experimental setting

For all the experiments, we use the Adam optimizer (β1 =
0.5, β2 = 0.9). The initial learning rate for the model when
using a classification loss is 5 × 10−4 (and 1 × 10−4 for
the models trained with a regression loss). All models are
trained over 500k iterations with a batch size of 20, using a
linear decay strategy, where the learning rate drops starting
from 250k iteration and ends up at 5× 10−6 for model with

classification loss (and 1 × 10−6 for models trained using
a regression loss). All the models are trained and evaluated
using the same training strategy. The training time is about
two days with one GEFORCE RTX 2080 Ti GPU.

1.3. Baselines

In this section, we provide more details on the baselines,
including ones not in the main paper due to space constraints.

SIFT-based relative rotation estimation. First, we detect
local features in images of size 256×256 with SIFT [8], and
then features are matched across images by fitting a model
using RANSAC [6]. The minimal number of inlier pairs is
set to 10. We decompose a rotation matrix with a 2-point
algorithm [1] for image pairs from the same panorama and
an essential matrix for image pairs with translation using
RANSAC [6]. We use the publicly available OpenCV im-
plementation for all of these steps (except for the 2-point
algorithm for which we use our own implementation).
Learning-based feature matching. We use the following
pretrained networks:

• D2-Net [4]. Detect-and-describe (D2) networks use
an ImageNet pretrained VGG16 [10] network as the
feature extraction network. The extracted feature maps
are used to detect keypoint with hard feature detections
and serve as local descriptors at the same time.

• SupetPoint [3]. SuperPoint uses a VGG-style [10] en-
coder, and passes the feature maps to two separate de-
coders for interest point detection and description. The
head of the interest point decoder adopts sub-pixel con-
volution [9], and the head of the descriptor decoder
uses a model similar to Universal Correspondence Net-
works [2]. Both decoders use non-learned upsampling
modules to compute the output.

These networks detect interest points in images and generate
corresponding dense feature descriptors. We then estimate
the rotation matrix using a model fitting technique following
the procedure described above.
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Figure 1. Architecture of decoder. The 4D correlation volume is reshaped and processed with two pre-activation residual blocks, and
eventually mapped by two fully-connected layers to a 360-dim distribution for each angle.

End-to-end relative rotation regression. We use the fol-
lowing regression baselines:

• Zhou et al. [12], hereby denoted by Reg6D. Image
features are concatenated and fed to a regression model
predicting a continuous representation in 6D. We report
two different models: (1) Reg6D-128, that adopts the
same network architecture and pretrained weights as
ours, and the same input resolution as ours, 128 ×
128, and (2) Reg6D, where we replaced the ResUNet
architecture of the encoder with ResNet, that outputs
1024×H/64×W/64 embedded feature maps, as we
found this modification yields improved performance.
In addition, the resolution of the input images for this
model is 256× 256.

• En et al. [5], hereby denoted by Reg4D. The learning-
based method proposed in En et al. concatenates the
pairwise images features and then regresses them to
predict a quaternion representation. We adopt the same
network architecture as for the Reg6D model, and the
resolution of the input images for the baselines is also
set to 256× 256.

• RegEuler. We implemented an additional regression
baseline built on our network architecture, which re-
gresses the concatenated feature to an Euler angle repre-
sentation. For this additional baseline, we report results
for input images of size 128× 128, which is the input
resolution used by our model.

2. Additional Experimental Results
2.1. Comparison to all baselines

We compare our approach to all the baselines described
in the previous section and report the results in Table 1.
These results further validate that our approach consistently
outperforms alternative techniques. Note that the strongest
baselines are reported also in the main paper.

We show the number of successful image pairs for SIFT,
D2-Net and SuperPoint in Table 2. We observe a significant

drop in SuperPoint’s ability to find enough good matches
to estimate the rotation matrix when the image pairs have
larger rotations and translations.

Also, we can see that using a smaller input image (128×
128 v.s. 256 × 256) negatively affects the performance of
Reg6D in non-overlapping cases, increasing the gap with our
models (which are trained using images of size 128× 128)
from a mean error of 29.82◦ to 48.37◦ on SUN360 and from
22.71◦ to 29.01◦ on StreetLearn.

2.2. Statistical analysis

We conduct a statistical analysis of the geodesic error for
the relative rotations. As illustrated in the histograms shown
in Figure 2, most errors fall in the first bin ([0◦, 10◦]), with
the frequency of errors below 10◦ being significantly larger
than in the baselines. As shown in the percentile of errors
of our method in Figure 3, approximately %80 of the errors
are below 5◦. In the histogram and percentiles of the interior
datasets (InteriorNet and SUN360), there’s a distinct peak
of error at 90◦, indicating that our method is confused by
certain scenes. From Figure 4, we can see the errors at 90◦

and 180◦ mainly stem from non-overlapping image pairs
(Figure 5 that shows failure cases also demonstrates this).

2.3. Roll angle experiments

We conduct a study of the influence of small roll angles
by feeding our models (trained without roll) with image pairs
containing small roll angles. Results are reported in Table 3.
As illustrated in the table, the mean geodesic errors over pairs
with up to 5◦ roll increase by up to 2◦ (across all overlap
levels), demonstrating that adding roll at test time does not
break the model, but rather leads to a modest increase in
error.

2.4. Pitch angle prediction from a single image

We evaluate to what extent pitch angles can be estimated
from a single image by inputting the same image twice into
our framework. The mean error (over pitch angle) over the
StreetLearn dataset is 0.75◦, with almost all images having



InteriorNet InteriorNet-T SUN360 StreetLearn StreetLearn-T
Overlap Method Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑)

Large

SIFT* [8] 6.09 4.00 84.86 7.78 2.95 55.52 5.46 3.88 93.10 5.84 3.16 91.18 18.86 3.13 22.37
D2-Net* [4] 8.27 3.78 69.48 14.19 9.38 15.82 10.48 4.22 69.46 12.85 4.42 54.12 8.76 6.73 1.32
SuperPoint* [3] 5.40 3.53 87.10 5.46 2.79 65.97 4.69 3.18 92.12 6.23 3.61 91.18 6.38 1.79 16.45
RegEuler-o 4.89 3.52 91.56 8.36 4.64 80.00 6.57 5.16 85.22 3.99 3.20 95.29 15.15 7.13 62.50
RegEuler 11.11 7.92 60.05 20.98 14.59 33.43 14.19 10.77 46.31 27.47 17.59 23.53 46.89 32.36 11.84
Reg4D [5]-o 4.95 3.47 91.56 9.58 7.00 69.25 7.86 5.89 76.85 3.14 2.67 98.82 11.73 6.35 74.34
Reg4D [5] 13.83 10.26 48.88 26.05 16.84 22.99 36.02 24.23 16.26 20.57 13.05 40.00 41.44 28.27 20.39
Reg6D [12]-o-128 7.48 5.24 75.19 14.58 10.97 46.27 11.97 8.11 57.64 6.00 5.20 85.29 13.66 8.24 58.55
Reg6D [12]-128 14.04 9.06 53.10 31.96 21.19 22.99 40.19 33.41 8.87 14.09 8.63 56.47 31.01 19.14 26.97
Reg6D [12]-o 5.43 3.87 87.10 10.45 6.91 67.76 7.18 5.79 81.28 3.36 2.71 97.65 12.31 6.02 69.08
Reg6D [12] 9.05 5.90 68.49 17.00 11.95 41.79 16.51 12.43 40.39 11.70 8.87 58.24 36.71 24.79 23.03
Ours-o 1.53 1.10 99.26 2.89 1.10 97.61 1.00 0.94 100.00 1.19 1.02 99.41 9.12 2.91 87.50
Ours 1.82 0.88 98.76 8.86 1.86 93.13 1.37 1.09 99.51 1.52 1.09 99.41 24.98 2.48 78.95

Small

SIFT* [8] 24.18 8.57 39.73 18.16 10.01 18.52 13.71 6.33 56.77 16.22 7.35 55.81 38.78 13.81 5.68
D2-Net* [4] 14.21 8.50 3.42 – – 0.00 25.49 9.17 4.51 41.35 18.43 1.66 67.27 67.27 0.00
SuperPoint* [3] 16.72 8.43 21.58 11.61 5.82 11.73 17.63 7.70 26.69 19.29 7.60 24.58 6.80 6.85 0.95
RegEuler-o 15.37 7.88 59.59 19.27 7.41 64.51 14.88 8.92 54.14 8.24 4.29 86.71 20.41 9.96 50.47
RegEuler 28.58 17.77 31.85 32.87 21.96 18.52 32.28 25.41 12.41 52.08 37.35 4.32 58.43 47.27 7.57
Reg4D [5]-o 16.62 8.46 57.88 24.77 12.42 41.67 15.02 9.81 51.88 6.55 4.15 91.03 14.56 7.46 65.93
Reg4D [5] 32.86 22.41 15.75 41.52 28.46 10.80 66.59 57.84 0.38 38.39 24.77 10.63 50.42 34.07 15.46
Reg6D [12]-o-128 22.45 12.57 38.70 31.15 16.58 27.47 23.17 15.08 24.06 9.12 5.71 82.06 20.70 10.69 45.43
Reg6D [12]-128 36.37 23.81 18.84 54.24 39.94 14.81 67.97 60.91 0.38 24.03 15.13 30.56 41.07 28.33 17.03
Reg6D [12]-o 17.83 9.61 51.37 21.87 11.43 44.14 18.61 11.66 39.85 7.95 4.34 87.71 15.07 7.59 63.41
Reg6D [12] 25.71 15.56 33.56 42.93 28.92 23.15 42.55 32.11 9.40 24.77 15.11 30.56 46.61 34.33 13.88
Ours-o 6.45 1.61 95.89 10.24 1.38 89.81 3.09 1.41 98.50 2.32 1.41 98.67 13.04 3.49 84.23
Ours 4.31 1.16 96.58 30.43 2.63 74.07 6.13 1.77 95.86 3.23 1.41 98.34 27.84 3.19 74.76

None

SIFT* [8] 109.30 92.86 0.00 93.79 113.86 0.00 127.61 129.07 0.00 83.49 90.00 0.38 85.90 106.84 0.38
D2-Net* [4] – – 0.00 – – 0.00 171.21 171.21 0.00 – – 0.00 – – 0.00
SuperPoint* [3] 120.28 120.28 0.00 – – 0.00 149.80 165.24 0.00 – – 0.00 – – 0.00
RegEuler 52.95 36.03 7.87 55.73 42.04 9.97 70.93 59.43 5.46 55.92 41.23 7.56 61.04 48.79 9.04
Reg4D [5] 62.04 48.92 4.59 59.85 48.81 4.99 80.08 72.78 1.32 46.19 32.74 9.26 55.70 39.70 9.79
Reg6D [12]-128 64.59 49.80 5.90 79.86 71.60 5.87 83.29 75.08 0.56 34.78 23.16 17.77 50.96 36.50 9.23
Reg6D [12] 48.36 32.93 10.82 60.91 51.26 11.14 64.74 56.55 3.77 28.48 18.86 24.39 49.23 35.66 11.86
Ours 37.69 3.15 61.97 49.44 4.17 58.36 34.92 4.43 61.39 5.77 1.53 96.41 30.98 3.50 72.69

All

SIFT* [8] 13.68 5.04 45.80 12.24 5.69 24.60 18.12 5.02 34.00 17.29 5.53 32.50 36.00 6.03 5.40
D2-Net* [4] 8.56 3.95 29.00 14.19 9.38 5.30 13.80 4.62 15.30 16.41 5.38 9.70 23.39 11.87 0.20
SuperPoint* [3] 8.19 4.08 41.40 6.62 3.38 25.90 11.09 4.00 25.80 11.52 4.80 22.90 6.42 2.62 2.80
RegEuler 28.97 15.53 35.90 36.68 22.70 20.60 49.13 31.44 15.60 49.93 35.08 9.30 58.06 45.54 9.00
Reg4D [5] 34.09 19.59 25.70 42.59 28.35 12.90 67.55 55.40 4.10 39.48 25.76 14.90 51.86 36.89 13.20
Reg6D [12]-128 35.98 18.65 28.70 55.51 36.90 14.50 70.46 57.87 2.20 28.03 17.11 28.20 44.79 31.00 14.40
Reg6D [12] 25.90 13.02 40.70 40.38 23.35 25.30 49.05 34.37 12.70 24.51 15.31 32.00 46.50 33.14 29.90
Ours 13.49 1.18 86.90 29.68 2.58 75.10 20.45 2.23 78.30 4.40 1.44 97.50 29.85 3.20 74.30

Table 1. Rotation estimation evaluation on the InteriorNet, the SUN360, and the StreetLearn datasets. We report the mean and median
geodesic error in degrees, and the percentage of pairs with a relative rotation error under 10◦, for different overlapping levels (Large, Small,
and None), as detailed in Section 4.3 of the main paper. For the percentage of pairs (10◦%), higher is better. Models trained only on
overlapping pairs are denoted with “-o”. *Errors are computed only over successful image pairs, for which these algorithms output an
estimated rotation matrix (failure over more than %50 of the test pairs is shown in gray).

InteriorNet SUN360 StreetLearn
Figure 2. Geodesic error histograms. The x-axes is the geodesic error (each bin covers 10◦, e.g. the first bin is over errors in the range
[0◦, 10◦], and so on). The y-axes is the frequency.



InteriorNet InteriorNet-T SUN360 StreetLearn StreetLearn-T
%Overlap Method Success Fail Total Success Fail Total Success Fail Total Success Fail Total Success Fail Total

Large
SIFT [8] 371 32 403 252 83 335 201 2 203 166 4 170 50 102 152
D2-Net [4] 330 73 403 102 233 335 176 27 203 119 51 170 3 149 152
SuperPoint [3] 382 21 403 259 76 335 201 2 203 169 1 170 30 122 152

Small
SIFT [8] 195 97 292 121 203 324 217 49 266 267 34 301 39 278 317
D2-Net [4] 17 275 292 0 324 324 23 243 266 17 284 301 1 316 317
SuperPoint [3] 112 180 292 60 264 324 112 154 266 115 186 301 3 314 317

None
SIFT [8] 8 297 305 5 336 341 32 499 531 27 502 529 15 516 531
D2-Net [4] 0 305 305 0 341 341 2 529 531 0 529 529 0 531 531
SuperPoint [3] 1 304 305 0 341 341 4 527 531 0 529 529 0 531 531

All
SIFT [8] 574 426 1000 378 622 1000 450 550 1000 460 540 1000 104 896 1000
D2-Net [4] 347 653 1000 102 898 1000 201 799 1000 136 864 1000 4 996 1000
SuperPoint [3] 495 505 1000 319 681 1000 317 683 1000 284 716 1000 33 967 1000

Table 2. Number of pairs for which SIFT, D2-Net, and SuperPoint return an answer. For each dataset and overlap ratio, we report the
number of pairs for which RANSAC successfully outputs a model (regardless of whether that model is accurate or not).

InteriorNet SUN360 StreetLearn
Figure 3. Cumulative distribution of geodesic error. The x-axes is the geodesic error, and the y-axes is the percentage.

errors smaller than 10◦ (%99.7). This result suggests that
pitch can be predicted from a single image. We should note
that pitch angles are generally easier to reason about (as
can be seen in the ablation study in the main paper). This
experiment also shows that the model correctly predicts an
identity rotation matrix (when the same image is fed to the
network twice), with an average geodesic error of 0.62◦ over
the StreetLearn dataset.

3. Additional Qualitative Results

We visualize some failure cases in Figure 5. On the
StreetLearn dataset, the error is mainly derived from the
ambiguity of opposite street directions. For example, the
top two rows show a street crossing. In both cases, the
model correctly predicts the pitch angle, but is confused
in predicting the correct direction at the intersection. The
remaining two rows show that when the image pair—while
non-overlapping—has similar objects visible in the view
(e.g., green scaffolding sheds in the last row), the model
might regard the two images are pointing in the same di-

rection, and when the image pair only shares has a small
overlap, as in the second to last row, the model may predict it
as non-overlapping pairs, and both of these cases have 180◦

error.

On SUN360 and InteriorNet, the larger variety of in-
door scene configurations makes the relative rotation task
more difficult. For example, the first two rows contain
repetitive texture of the roof and floor, which confuse the
model. The last two rows illustrate ambiguities arising from
non-overlapping pairs, where the possible horizontal rota-
tion range is [90◦, 270◦]. Even when we narrow down the
choices, for example if both views observe a corner of the
room, there still might exist three plausible choices. Our
results suggest that estimating rotations in indoor scenes is
generally more difficult in comparison to outdoor scenes.

In Figure 6, we provide additional visualizations of cues
detected in image pairs. We provide more qualitative results
on StreetLearn, SUN360, and InteriorNet in Figure 7 and
Figure 8. More qualitative results on London and Pittsburgh
are shown in Figure 9.



InteriorNet SUN360 StreetLearn StreetLearn-T
Figure 4. Geodesic error distribution. The x-axes is the geodesic error, and the y-axes is the ground truth rotation angle.

Rotation Error Yaw Error Pitch Error
%Overlap Roll Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑)

Large = 0◦ 2.27 1.07 99.41 1.86 0.67 99.41 0.70 0.53 100.00
< 5◦ 7.71 3.18 97.08 5.20 0.84 97.65 1.55 1.55 99.41

Small = 0◦ 2.66 1.41 98.34 2.12 0.87 98.67 0.87 0.61 99.67
< 5◦ 6.43 3.39 96.33 3.43 0.95 98.01 1.56 0.87 99.00

None = 0◦ 6.48 1.58 96.60 5.70 0.92 96.79 1.18 0.59 99.24
< 5◦ 8.54 3.44 96.22 6.88 1.16 96.22 1.37 0.87 99.24

All = 0◦ 4.61 1.42 97.60 3.97 0.85 97.80 1.00 0.59 99.50
< 5◦ 7.77 3.39 96.40 5.56 1.04 97.00 1.46 0.88 99.20

Table 3. Roll angle experiments on StreetLearn, evaluating the effect of adding small roll angles to image pairs at test time.
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StreetLearn Indoor

Figure 5. Failure cases. The full panoramas are shown on the left, with the ground-truth perspective images marked in red. We show our
predicted viewpoints in yellow.



Figure 6. Visualizing cues detected by our model for overlap-
ping and non-overlapping pairs. We show regions which, when
blocked, affect the rotation error, with warmer colors depicting
larger errors (according to their associated color bars). The full
panoramas are shown above, with the ground-truth and predicted
perspective image regions marked in red and yellow, respectively.
In indoor scenes, blocking corresponding regions (in overlapping
pairs) may result in large errors (first row). In outdoor scenes that
are richer in information, blocking small regions does not seem to
affect the model’s predictions in overlapping cases (third row). In
non-overlapping cases, we can see that the model seems to reason
about truncated objects (second row, left) or cues related to van-
ishing points (bottom row, left), sunlight (bottom row, right) and
shadows (second row, right).
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StreetLearn

Figure 7. Predicted rotation results. Full panoramas are shown
on the left, with the ground-truth perspective images marked in red.
We show our predicted viewpoints in yellow, and results obtained
using the regression model of Zhou et al. [12] in blue.
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SUN360 InteriorNet

Figure 8. Predicted rotation results of indoor datasets. Full panoramas are shown on the left, with the ground-truth perspective images
marked in red. We show our predicted viewpoints in yellow, and results obtained using the regression model of Zhou et al. [12] in blue.
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Pittsburgh test images London test images

Figure 9. Predicted rotation results on new cities. Full panoramas are shown on the left, with ground-truth perspective images marked in
red. We show our predicted viewpoints in yellow and results obtained using the regression model of Zhou et al. [12] in blue.


