Supplementary Material

for

Semantic Scene Completion via Integrating Instances and Scene in-the-Loop

1. Introduction

This supplementary material presents: (1) details
of three datasets; (2) the detail description of train-
ing/inference strategies and network architecture for in-
stance and scene completion; (3) more quantitative and
qualitative ablation studies; (4) visualization results.

2. Dataset Details

In this section, we will discuss the detailed information
of the three datasets we explored in the main paper.
Volumentic SSC data generation. For the whole scene,
we follow the original semantic scene completion dataset
preparation [9] to rotate the scene to align with gravity and
room orientation based on Manhattan assumption. The size
of the whole room is 4.8m length, 2.88m height and 4.8m
width and the scene is voxelized into 240 x 144 x 240 vol-
ume with a grid size of 0.02m and a truncation value of
0.24m. For the saving of computational cost, we follow
[9, 12, 5, 4, 3] to downsample the ground truth by a rate of
4 and the volume size is 60 x 36 x 60, and we also follow
[6, 1, 4] to down sample the input volume into the size of
60 x 36 x 60.

Instance-level data generation. For the instances in the
scene, as mentioned in the main paper, the goal of pro-
posal generation module in the scene-to-instance comple-
tion stage is to provide high quality instance proposals for
the follow up instance reconstruction. Thus, 3d bound-
ing box/proposal labels are required as supervision. In-
stead of using expensive manually annotated, We exploit
max-connected-region to generate ground truth 3D bound-
ing boxes automatically. More specifically, since the three
datasets provide voxel-wise semantic labels, the adjacent
voxels that have the same semantic usually belong to the
same object. Therefore, starting at one voxel, we can get
the max-connected-region and all the voxels in this region
belong to one object. The smallest envelope axis-aligned
box that closes voxels of the max-connected-region is la-
beled as ground truth 3D bounding box. Although such
gratis labeling of 3d bounding boxes are coarse without
precise size and orientation, it could provide sufficient in-

formation, including localization and completion space, for
helping distinguishing nearby objects and constraining in-
stance’s shape in our shape completion module.

3. Implementation Details

In this section, we provide detailed description of the
proposed instance completion and scene completion.

3.1. Details of Instance Completion

As mentioned in the main paper, instance completion
includes a proposal generation module and a shape com-
pletion module. The architecture and parameter details are
shown in Table 1 and Table 2.

As illustrated in Table 1, the proposal generation mod-
ule groups and extracts location and semantic features of
input points by salg and sal;, respectively. Then we
element-wise add the two features and sequentially feed
them to sa2, sa3 and sa4 that followed by two FP lay-
ers, i.e., fpl and fp2, to propagate features among dif-
ferent points. With the powerful points features, three off-
set and proposal blocks are exploited to predict 3d bound-
ing boxes/proposals, which is supervised by our generated
ground truth boxes.

To preserve the structural and context of instances as
complete as possible, we follow [ 1] introduce 3D grids as
intermediate representations during the reconstruction pro-
cess, just as mentioned in main paper Section 3.3. As illus-
trated in Table 2, our semantic encoder utilize two simple
fully connected layers to encode instance-level semantic,
which provides shape prior for better convergence and com-
plete shape. Furthermore, our geometry encoder extracts
geometry feature by exploiting points relationship which is
established in 32 x 32 x 32 grid. Consequently, we con-
catenate geometry and instance semantic features and feed
the enhanced features to our decoder which consists of three
3D deconv layers, to obtain our initial results. To further im-
prove local details of instances with complex shapes, such
as chairs, we take a concatenation of downsampled point
set and corresponding 3D grid features as input to an MLP,
consisting of two fully connected layer, to learned accu-



Layer name Input Type Output size
sa_1_0 location of point cloud SA | (2048, 3+128)
sa_1_1 semantic vector of point cloud | SA | (2048, 3+128)

sa_2 sa_1.0,sa_1_1 SA (1024,3+256)
sa_3 sa_2 SA (512, 34256)
sa 4 sa_3 SA (256, 3+256)
fp_1 sa_3,sa 4 FP (512, 3+256)
fp 2 sa2,sa3 FP | (1024, 3+256)
offset_1 fp2 CBR 1024, 256)
offset_2 offset_1 CBR (1024, 256)
offset_3 offset_2 Conv | (1024, 3+256)

proposal_1 offset_3 CBR (256, 128)

proposal 2 proposal_1 CBR (256, 128

proposal 3 proposal 2 Conv (256, 62)

Table 1. Architecture details of proposal generation. SA and FP
represent the set abstraction layer and feature propagation layer,
respectively. CBR denotes a convolution block consists of a 1 x
1 convolution layer followed by a batchnorm and Relu function
while Conv means a single 1 x 1 convolution layer.

Layer name Input Output size
FC_1 Semantic Vector (16,1)
Semantic Encoder FC2 FC_1 (64,1)
Reshape_1 FC2 (1,4%)
Griding Partial Point Cloud (1, 32°%)
Conv3D_1 Griding (16, 16)
Geometry Encoder Conv3D_2 Conv3D_1 (32, 8i*)
Conv3D_3 Conv3D_2 (32, 4%)
Concat_1 Conv3D_3, FC2 (33, 4%)
Conv3D_4 Concat_1 (32, 4%)
Deconv3D_1 Conv3D_4 (32, 8%)
Decoder Deconv3D_2 Deconv3D_1, Conv3D_2 (32,16%)
Deconv3D_3 Deconv3D_2, Conv3D_1 (32, 32%)
Rev-Griding Deconv3D_3 (1, 32%)
Feature-Point Point_DS Rev-Griding, Partial Point Cloud (3,1024)
DownSampling(DS) Feature_DS_1 Point_DS, Conv3D_2 (128,1024)
Feature_DS_2 Point_DS, Conv3D_1 (256,1024)
Concat_2 Feature_DS_1, Feature_DS_2 (384,1024)
FC3 Concat_2 (96,1024)
FC_4 FC3 (24,1024)
MLP Reshape 2 FC_ 4 (3,8192)
Output Tile(Point_DS), Reshape_2 (3,8192)

Table 2. Architecture details of shape completion. Tile denotes a
operation that replicate the input (3, m) n times and return a new
point set with the size of (3, m X n). We use the Griding, Rev-
Griding and downsampling operations proposed in [1 1]

rate residual offset between initial shape results and ground
truth. Thus we obtain more complete and refined instance
shape with fine-grained details. For practice, we set M =
2 x 104, M’ = 1024, N, = 2048, N = 8192 and C’ = 256
for feature learning of C' = 12 classes and K =16, 0 = 0.2,
and 8 = 0.75 for proposal selection while use H = W = D
= 32 for the 3D grid.

3.2. Details of Scene Completion

Table 3 illustrates the details of our scene completion.
We encode semantic information volume Vg and comple-
tion information volume Vr, respectively. Then we com-
bine the semantic and completion features and feed them to
the follow-up encoder blocks, i.e., s1 and s2. Then two 3D
deconv are exploited to recover the semantic labels to the

Layer name Input Type Output size

Semantic Conv3D_1.0 Semantic Volume Vg CBR (3,60,36,60)
Encoder Conv3D_1_1 Conv3D_1_0 CBR | (64,60,36,60)
Conv3D_12 Conv3D_1_1 CBR | (128,60,36,60)

Conv3D 2.0 TSDF Volume Vr CBR (3,60,36,60)

Geometry | Conv3D_2_1 Conv3D 2.0 CBR (64,60,36,60)
Encoder Conv3D 22 Conv3D 2_1 CBR | (128,60,36,60)
Add-1 Conv3D_1_2, Conv3D_22 - (128,60,36,60)
DDR_0 Add_1 DDR | (128,30,18,30)
DDR_1 DDR_0 DDR | (128,30,18,30)
DDR_2 DDR_1 DDR | (128,30,18,30)
DDR_3 DDR_2 DDR | (128,30,18,30)
Encoder Add_2 DDR_3, Down(Add_-1) - (128,30,18,30)
DDR 4 Add_2 DDR | (256,15,9,15)

DDR_5 DDR 4 DDR | (256,159,15)

DDR_6 DDR_5 DDR | (256,15,9,15)

DDR_7 DDR_6 DDR | (256,15,9,15)
Deconv3D_1 DDR_7 DBR | (128,30,18,30)
Add_3 Deconv3D_1, Add_2 - (128,30,18,30)

Decoder

Deconv3D_2 Add_3 DBR | (128,60,36,60)

Conv3D_3 Deconv3D_2, Up(Add_3) Conv | (12,60,36,60)

Table 3. Architecture and parameters details of scene completion
stage. Down, Up mean downsampling and upsampling operation,
respectively. CBR denotes a convolution block consists of a 3 X 3
convolution layer flowed by a batchnorm layer and Relu function
and DBR replaces the convolution layer of CBR with a 4 x 4 de-
convolution layer. Conv means a single 1 x 1 convolution layer.

original resolution and a final classify to get semantic scene
completion results with size 12 x 60 x 36 x 60.

In addition, the class distribution is imbalanced. For ex-
ample, the ratio between floor and TVs is about 70:1 in
NYU. In order to solve the problem of imbalance distribu-
tion of different categories’ voxel-wise samples, we count
the number of voxels of each category and employ weights
w for each category loss, inspired by the shrink function
proposed in [&],

10
a+b-tanh (¢ (v; — Vmin))

,ie{l,---,C}.
9]

Specifically, v; is the number of voxel-wise samples of one
category and v,,;, is the minimum number among all cat-
egories. c stands for the shrinkage rate of weight and the
combination of a and b limit the the weight w; to the range
of (10/(a+b),10/a). In practice, we seta = 1, b = 99 and
¢ = 3. This re-weight ensures that some categories with a
small number of samples will not be overwhelmed during
the training process.

w; =

4. More Quantitative and Qualitative Ablation
Studies

The effects of scene completion. In the main paper, we
show the effectiveness of scene completion in our method
for the overall 3D semantic scene completion. Here, we
task a step further to explore and discuss how the scene
completion in particular benefit the final result through in-
fluencing other component in our framework. We present
the performance of the proposal generation module at dif-



Datasets Iteration

win. chair bed sofa table tvs furn. objs. avg

I 7.5 21.1 59.6 45.7 20.1 18.0 27.6 7.4 25.6

NYU SO + Iter I-S 15.8 30.0 66.0 48.8 29.8 31.6 359 19.0 34.6

SO + 2 Tter I-S 21.9 33.2 69.0 55.8 434 36.3 43.2 23.8 40.8

I 32.7 383 64.9 544 43.1 35.1 389 21.7 41.1

NYUCAD SO + Iter I-S 30.1 50.0 66.6 52.3 44.0 36.8 46.3 31.3 44.5
SO + 2 Tter I-S 42.0 50.2 72.3 60.5 58.5 46.7 54.3 37.2 52.7

I 74.2 65.0 83.9 82.0 67.3 32.7 72.1 433 65.0

SUNCG-RGBD SO + Iter I-S 76.1 75.7 85.2 84.2 70.8 35.6 82.6 53.3 70.4
SO + 2 Tter I-S 76.8 76.9 86.6 83.2 72.9 34.0 86.0 56.5 71.6

Table 4. Ablation studies of the effects of the scene completion to the proposal generation module of instance completion on three datasets.
The numbers reported are detection mAP (IoU=0.25) for different classes, where I is the instance completion and S is the scene completion.
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Figure 1. Semantic Scene Completion results on NYUCAD dataset. From left to right: (a) RGB input, (b) Depth, (c) ground truth, (d)
results of SSCNet [10], (e) results of Sketch [2], (f) baseline (without using instance completion), (g) our results. Our results achieve higher
voxel-level accuracy compared with SSCNet [10] and Sketch [2]. Better viewed in color and zoom in.

ferent stages in detail. As shown in Table 4, without Sy,
the proposal generation module are not able to obtain an ac-
curate understanding of the whole 3D scene, which means
that it can not provide an accurate estimation of objects and
easily confuse some close-by objects. However, with the
guidance of semantic prior from scene completion, the pro-
posal module can distinguish some objects that are mix-up
to each other. For example, objects such as windows and
paintings have no obvious structural features so if only the
location information of point clouds is used, they are easily
mixed with the background wall. However, when the se-
mantic prior in hand, these objects can be easily detected,
and the performance increases with the improvement of se-
mantic accuracy two iterations bring more gain than once.
Secondly, the proposal generation module can better esti-
mate the size of each object and reduce the proposal over-

lap between different objects by using the structural infor-
mation from scene completion in the invisible area. In addi-
tion, some small partial objects, which tends to be missed in
the overall scene, and are easier to be localized after scene
completion in the visible area.

The effects of Iterative Integrating Instances and Scene
information. We try to find out what benefits does the net-
work actually get from the iterative refinement scheme. As
mentioned in the main paper, the proposed method aims to
recover more fine-grained shape details in not only the visi-
ble but also invisible areas. To verify the detailed effect, we
conduct experiments to explore the improvements on visi-
ble and invisible areas, respectively. Results are illustrated
in Table 5. We observe that there are relatively uniform
increases in both visible and invisible areas, which proves
that our novel framework effectively explores the integrated
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Figure 2. Semantic Scene Completion results on SUNCG-RGBD dataset. From left to right: (a) RGB input, (b) Depth, (c) ground truth,
(d) results of SATNet [6], (e) results of Sketch [2], (f) baseline (without using instance completion), (g) our results. Our results achieve
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(c) Ground Truth (d) SATNet

higher voxel-level accuracy compared with SATNet [6] and Sketch [2]. Better viewed in color and zoom in.

instances and scene information.

Methods Dataset Visible Invisible
SC SSC | SC SSC
Baseline NYU 98.1 473 | 645 38.7
+S-1-S Once NYU 97.6 53.6 | 70.9 453
+Iter S-1-S NYU 98.1 55.5 | 723 46.8
Baseline NYUCAD 99.6 622 | 80.7 49.1
+S-1-S Once NYUCAD 99.6 68.2 | 84.1 54.9
+lter S-1-S NYUCAD 99.6 69.5 | 84.7 56.3
Baseline SUNCG-RGBD | 93.5 85.6 | 86.2 59.0
+S-1-S Once | SUNCG-RGBD | 959 88.1 | 889 644
+Iter S-1-S SUNCG-RGBD | 96.3 884 | 889 65.0

Table 5. Visible and Invisible Region Results of the three
datastes. Bold numbers represent the best scores.

5. Visualization Results

Figures 1 and 2 illustrate the visualization results on
NYUCAD and SUNCG-RGBD, respectively. Although the
previous methods work well for some scenes, they usually
fail to deal with shape details and nearby objects nearby ob-
jects whose semantic categories are easily mixed-up in the
scene completion. However, our proposed method lever-
ages and propagates instance-level and scene-level infor-
mation can obtain a more comprehensive and accurate un-
derstanding of 3D scene. For NYUCAD, we compare our
method with state-of-the-art method Sketch [ 1] and the clas-

sic ssc method SSCNet [10]. For SUNCG-RGBD, we
compare with Sketch [I] and SATNet [7], who proposes
SUNCG-RGBD dataset.
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