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This supplementary material details the analytically
computed height maps and normal maps for reproducibility
(Sec. 1), and displays additional comparison results from
orthographic and perspective normal integration methods
(Sec. 2).

1. Experimental Settings
This section details analytically computed height maps

and their corresponding normal maps under orthographic
and perspective projection, for the sake of reproducibility.

1.1. Orthographic Surfaces

Figure 1 shows the coordinate system. We sample a
H×W height map z(u, v), defined over the uv-coordinates
on the image plane, from a 2D function z(x, y) in the ob-
ject coordinates. We then perform normal integration in the
camera coordinates. The 2D function z(x, y) is defined over
a continuous domain [x-, x+] × [y-, y+] in the object coor-
dinates, where x-, x+, y-, y+ is the lower and upper limit
along x and y axis, respectively. We sample the height val-
ues z(u, v) over a regular grid {xi | xi = x- +(i−1)w, i =
1, . . . ,W}×{yi | yi = y- +(i−1)h, i = 1, . . . ,H}, where

w =
x+ − x-

H − 1
, h =

y+ − y-

W − 1
(1)

are the step-sizes along x and y direction, respectively.
Once the analytic form of z(x, y) is known, we can

analytically compute its partial derivatives zx(x, y) and
zy(x, y), and sample zx(u, v) and zy(u, v) on the same uv-
coordinates. Let no(u, v) be a normal vector in the object
coordinates, indicated by the superscript o. We can compute
no(u, v) from sampled partial derivative as

no(u, v) =
[−zx(u, v),−zy(u, v), 1]>

‖[−zx(u, v),−zy(u, v), 1]‖2
≡ [nox, n

o
y, n

o
z]>.

(2)

As we perform normal integration in the camera coordi-
nates, we transfer the normal map in the object coordinates
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Figure 1. We compute analytic height or normal maps in the object
coordinates and perform normal integration in the camera coordi-
nate.

to the camera coordinate as

nc(u, v) = [noy, n
o
x,−noz]>, (3)

where the superscript c indicates the camera coordinates.
The followings are the 2D functions z(x, y) we used in

our experiments.

SPHERE

z(x, y) =
√

1− (x2 + y2) for x2 + y2 < 1 (4)

VASE

z(x,y) =
√
ŷ2 − x2, where

ŷ = −138.4ỹ6 + 92.16ỹ5 + 84.48ỹ4 − 48.64ỹ3

− 17.60ỹ2 + 6.4ỹ + 3.2, and
ỹ = y/12.8

for (x, y) ∈ [−6.4, 6.4]× [−6.4, 6.4]

(5)

ANISOTROPIC GAUSSIAN The anisotropic Gaussian sur-
face used in [2] is given by the sum of anisotropic Gaussian
probability density functions as

z(x, y) =

n∑
k=1

ak exp(−1

2
(

[
x
y

]
− pk)>Λ−1

k (

[
x
y

]
− pk)).
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Figure 2. The geometry of computing the height map and the nor-
mal map of a sphere captured by a perspective pinhole camera.

Following [2], we sample a 150× 150 height map over the
domain (x, y) ∈ [−1, 10]× [−1, 10], with n = 5 peaks, and

a1 = 2.5, p1 =

[
1
2

]
, Λ1 =

[
3 −1
−1 3

]
,

a2 = 3, p2 =

[
7
4

]
, Λ2 =

[
2 −1
−1 4

]
,

a3 = −5, p3 =

[
5
5

]
, Λ3 =

[
2 1
1 5

]
,

a4 = −2, p4 =

[
2
8

]
, Λ4 =

[
5 1
1 3

]
,

a5 = 5, p5 =

[
6
8

]
, Λ5 =

[
4 −1
−1 1

]
.

1.2. Perspective Sphere

In main paper’s Fig. 7, we applied normal integration
methods on the normal map of a sphere captured by a per-
spective pinhole camera. To this end, a sphere with radius
r at [0, 0, d] is first centered in the camera coordinate, as
shown in Fig. 2. A point p = [x, y, z]> on the sphere sur-
face should thus satisfy

x2 + y2 + (z − d)2 = r2. (6)

The intersections of camera rays and the sphere surface is

then computed. Let K =

[
f 0 ox
0 f oy
0 0 1

]
be the intrinsic matrix

of a perspective pinhole camera, where f is the focal length
and [ox, oy]> is the principle point in the pixel coordinates.
A camera ray t ∈ R3 passing through a pixel u = [u, v]>

is t = K−1ũ ≡ [tx, ty, 1]>, where ũ = [u, v, 1]> is u in
homogeneous coordinates. The third component of t is 1,
and the point p(u) on this ray is

p(u) = z(u)t = [z(u)tx, z(u)ty, z(u)]>. (7)

Plugging Eq. (7) into Eq. (6) yields a quadratic equation

(z(u)tx)2 + (z(u)ty)2 + (z(u)− d)2 = r2. (8)

Two solutions exist, and we take the smaller one as the
height value z(u), since the intersection point is the one
close to the image plane. The corresponding normal vector
n(u) is given by

n(u) =
[z(u)tx, z(u)ty, z(u)− d]>

‖[z(u)tx, z(u)ty, z(u)− d]‖ 2

. (9)

In our experiment, we sample the height values and normal
vectors on a 128 × 128 image with f = 600, d = 10, and
r = 1. The principle point is located at the center of the
image, i.e., ox = oy = 63.5.

1.3. Noise and Outliers

To obtain a normal map with noise, we add Gaus-
sian noise with standard deviation σ to the gradient field
[zx, zy]> as

z(noise)
x = zx +N (0, σ), z(noise)

y = zy +N (0, σ).

To simulate outliers, we scale the gradient field by 5 as

z(outlier)
x = 5zx, z(outlier)

y = 5zy.

We then recover the normal map with noise or/and outliers
according to Eq. (2).

2. Additional Comparison

This section shows more results in addition to the ones
displayed in the main paper.

Analytic Orthographic Surfaces Figures 3 and 4 display
more comparison results between orthographic normal in-
tegration methods discussed in main paper’s Sec. 5. For
each normal map, we used its three variants: the noise-free
one, the one with Gaussian noise N (0, 0.1), and the one
with 1% outliers. The checkerboard artifact exists in the
surface estimated by discrete functional [2], and discrete
functional performs the worst in all cases. Discrete Pois-
son’s equation [4] and DGP [6] show similar error patterns.
Both discrete Poisson’s equation and DGP are sensitive to
natural boundary or outliers. Our five-point plane fitting
method estimates the height map on the same domain Ωn

as discrete functional or discrete Poisson’s equation; our
four-point plane fitting method is on the same domain Ωz as
DGP. Both our methods perform robustly to natural bound-
ary or outliers. By comparing the evaluation scores between
discrete Poisson’s equation and DGP as well as our five-
point and four-point version, we can realize that estimating
the height map on Ωz is more robust to noise than that on
Ωn. But for outliers, our five-point version is more robust
than the four-point version.



Figure 5 compares the robustness of discrete Poisson’s
equation [4], DGP [6], discrete functional [2], and our meth-
ods using a sphere’s normal map under orthographic pro-
jection. On the left, we gradually increase the percentages
of randomly selected outliers. The RMSE of our method
increases much slower than the other three methods, ver-
ifying that our method is more robust. Further, DGP has
an overlapped curve as discrete Poisson’s equation (red and
green), validating that there is no crucial difference between
the two methods. On Fig. 5 right, we add Gaussian noise to
all normal vectors and gradually increase the standard devi-
ation. Our method performs comparably to DGP or discrete
Poisson’s equation.

Real-world Perspective Surfaces Figures 6 and 7 dis-
play more results from perspective normal integration meth-
ods on real-world normal maps, in addition to HARVEST
displayed in main paper’s Fig. 7. We obtained the normal
maps by applying the state-of-the-art photometric stereo
method [1] on DiLiGenT benchmark [5]. In terms of eval-
uation scores, no method achieves the best performance in
most objects due to complex discontinuities in the surfaces.
However, each method exhibits its feature. For discrete
functional [2] and discrete Poisson’s equation [4], spikes
are more likely to occur. Besides, the checkerboard arti-
fact occurs in discrete functional [2] and Zhu and Smith’s
method [7]. Our method performs stably; there is no
checkerboard artifact, and spikes are not likely to occur.
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Figure 3. Comparison of orthographic normal integration meth-
ods on analytically computed SPHERE and ANISOTROPIC GAUS-
SIAN. The numbers underneath the absolute error maps are RMSE
/ MAE [×10−3].
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Figure 4. Comparison of orthographic normal integration methods
on analytically computed VASE. The numbers underneath the ab-
solute error maps are RMSE / MAE [×10−2].
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Figure 5. Comparison of robustness against (Left) outliers and
(Right) Gaussian noise. Note that in the left graph the red and
green curves are almost overlapped.
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Figure 6. Comparison of perspective normal integration methods on real-world normal maps. The numbers underneath the absolute error
maps are RMSE / MAE [×1].
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Figure 7. Comparison of perspective normal integration methods on real-world normal maps. The numbers underneath the absolute error
maps are RMSE / MAE [×1].


