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Figure A.1: This Figure shows some of the randomly sam-
pled images from the data sets we use to validate our meth-
ods. Effectiveness of our method on these diverse charac-
terstics of datasets demonstrate its generic nature.

Here, we present a extended description of the datasets
we used to evaluate our algorithms and the compared base-
lines. We evaluated our methods together with the others on
four challenging image classification benchmarks: CIFAR-
10[3], CIFAR-100[3], FashionMNIST[7] and SVHN[2].
Each of the datasets has different properties and present new
challenges for the active learning framework. FashionM-
NIST is a grey scale image dataset. Whereas, others are
RGB image datasets. CIFAR-10 consists of 50,000 images
for training and 10,000 for testing. There are 5,000 samples
for each of the 10 object categories. CIFAR-100 is con-
structed in a similar fashion with the same size of the train-
ing and testing set. The difference lies in the granularity of

the data distribution as 100 classes are categorised (500 im-
ages corresponding to each class). The SVHN dataset rep-
resent 10 digit classes with 73,257 train images and 26,032
test images. Finally, FashionMNIST contains training and
testing sets of the size 60,000 and 10,000, respectively, with
annotations of 10 clothing designs. From an input im-
age resolution perspective, despite FashionMNIST with a
28x28 size, the other datasets have 32x32 scale.

Together with the classification task, we shift the
learner’s objective to regression. As we tackle the 3D Hand
Pose Estimation task, we benchmark our baselines on one
of the most challenging, widely been used and first of depth
based datasets, ICVL[6]. This is composed of 16,004 im-
ages for training and 1,600 for testing. The dataset has a
single frontal viewpoint and a wide range of articulation
and hand positions. The initial resolution is 320x240, but
we pre-process by hand centring and scaling to 128x128.

The last benchmark we deployed in the experiment sec-
tion is the face expression dataset, Radboud Faces Database
(RaFD)[4]. This is formed of 7,200 training images, 800
for each of the 8 expressions. However, the test set contains
only 840 images. Although the initial image dimensions are
256x256x3, for efficiency, we downscale them by a factor
of 2. As we consider the entire training set as labelled in
this experiment, we generate with StarGAN[1] 57,600 im-
ages for the unlabelled set. Similar to the CIFAR-10 eval-
uation settings, we initially create a randomly distributed
subset DS of 10,000 images from which we further apply
the selection given a budget b of 1,000.

B. Experiments

CIFAR-10 imbalanced dataset In the experimental part,
we evaluated quantitatively in a systematic manner the
active learning methods over four image classification
datasets. Although, before selection, we randomise the un-
labelled samples to a subset, the dataset is still relatively
balanced to each class distribution. However, this is not
commonly the case where there is no prior information re-



lated to the data space. Therefore, we are simulating an im-
balanced CIFAR-10 in a quantitative experiment. Before-
hand we considered the 50,000 training set as unlabeled,
given 5,000 samples for each of the 10 categories. We cus-
tom the dataset so that 5 of the 10 classes contain 10 % of
their original data (500 samples each). Therefore, the new
unlabelled pool is composed of 27,500 images. The exper-
iment architecture and settings are similar to the one on the
full scale.
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Figure B.1: Quantitative results - CIFAR-10 imbalanced
dataset

Figure B.1 shows the progressions of the presented
baselines. Our proposed methods, UncertainGCN and
CoreGCN, out-stand once again the other model-based se-
lections like VAAL and Learning Loss. UncertainGCN
scores 2% more than those methods with 80.05% mean
average accuracy at 10,000 labelled samples. Meanwhile,
CoreGCN achieves 84.5% top performance together with
CoreSet. Thus, the geometric information is more useful in
scenarios where the dataset is imbalanced.

1000 2000 3000 4000 5000
Number of labeled images

50

55

60

65

70

75

80

85

A
cc

ur
ac

y 
(m

ea
n 

of
 5

 tr
ia

ls
)

Testing accuracy on CIFAR-10 GCN Hyper-parameters
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Figure B.2: Ablation studies - CIFAR-10 GCN Hyper-
parameters tuning

Ablation study - GCN parameter search While varying
the architectural parameters of the GCN binary classifier,

we encountered a poorer selection with the increase of the
Dropout rate from 0.3 to 0.5 or 0.8. However, when chang-
ing the size of the hidden units to 256 and 512, the Un-
certainGCN sampling was not affected on CIFAR-10. This
might require further optimisation for different datasets al-
though robustness is being shown.
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Figure B.3: CIFAR-10 Learner VGG-11 - 3 selection stages

VGG-11 learner for CIFAR-10 image classification for
3 selection stages In Figure B.3, we modified the archi-
tecture of the learner from CIFAR-10 experiment to VGG-
11[5]. Therefore, we analyse how the AL methods are af-
fected in terms of accuracy at the fourth sampling stage.
In training the VGG-11 network, we kept the same hyper-
parameters. We also had to trace the features after the first
four Max Pooling layers for the Learning Loss baseline.
Our proposed methods present robustness to this change
whilst GCN settings were left unchanged. Hence, they
surpass all state-of-the-arts at this early stage. This also
demonstrates how the batch size and the feature represen-
tation play an important role in the performances of the
other baselines. The most affected baseline in this context
is CoreSet.

Hyper-parameters Study Here, we present the analy-
sis of two important hyper-parameters in the objective of
the sampler. These are GCN uncertainties margin smargin

and λ, the labelled vs unlabelled data loss weighing factor.
Figure B.5 summarises these studies. From the Figure, we
observe that the performance improves when we decrease
margin from 0.4 to 0.1. Afterwards, the performance is
stable. This shows that our method is stable in the range
of an optimal margin. Similarly, λ influences the perfor-
mance. However, the drift in performance is smooth with
the change in the value of λ.

Extended qualitative analysis on the AL method In
Figure B.4, we extend our qualitative analysis by visual-
ising the initial, the unlabelled and the last selected sam-
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Figure B.4: Extended qualitative analysis on labelled/unlabelled images at the last selection stage for CIFAR-10, ICVL and
RaFD
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Testing accuracy on CIFAR-10 UncertainGCN margin smargin
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Testing accuracy on CIFAR-10 GCN loss weighting factor 
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Figure B.5: Hyper-parameter study on UncertainGCN mar-
gin (smargin) (left) and labelled vs unlabelled data loss
weighing factor, λ (right) (Zoom in the view)

ples from CIFAR-10, ICVL and RaFD. The last selection
stage for CIFAR-10 and ICVL is the 10th, while in the syn-
thetic RaFD experiment is the 4th. The seed labelled im-
ages are acquired randomly before the first selection stage.
The RaFD seed examples are from the entire training set
as the AL selection is applied on StarGAN generated im-
ages. For all the three benchmarks we evaluated the selected
examples with our proposed AL method, UncertainGCN.
Although the seed labelled samples for CIFAR-10 are ran-
domly selected, the top query images from the ”cat” class
consist of difficult examples. On the other hand, the re-
mained unlabelled images present distinguishable features,
easy for the learner to predict. These observations have
been quantified in the main paper as well. However, in the
ICVL dataset case, the selected samples show closer and
easier hand articulations compared to the initial labelled set.
This is because of the highly complex set that was used as

seed examples. The unlabelled images might have a lack of
representativeness in the learner’s perception after all the
10 sampling stages. Finally, in the RaFD synthetic sub-
sampling process, we can clearly denote the noisy images
that were left unlabelled. These present more artefacts than
the selected group.
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