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In this supplementary material we first explain our imple-

mentation details in depth, then showcase additional experi-

ments to provide more insights from our model, and finally

provide additional qualitative results.

Please check out our supplementary video for a short

summary of our method as well as qualitative results with

narrated comments.

1. Implementation details

1.1. Architecture

Backbone network: Fig. 1 shows an architecture diagram

of the backbone network. We combine ideas from [1, 7]

to build a multi-resolution backbone network that extracts

geometric and semantic information from the past LiDAR

sweeps and is able to aggregate them to reason about motion.

Our backbone is composed of 4 convolutional blocks, and

a convolutional header. The number of output features and

kernel size is indicated in Fig. 1. All convolutional layers

use Group Normalization [6] with 32 groups, and ReLU

non-linearity. The scene context features after each residual

block are C1x, C2x, C4x, C8x, where the subscript indicates

the downsampling factor from the input in BEV. The features

from the different blocks are then concatenated at 4x down-

sampling by max-pooling higher resolution ones C1x, C2x
and interpolating C8x. Finally, a residual block of 4 con-

volutional layers with no downsampling outputs the scene

context C. Since the LiDAR input is voxelized at 0.2 meters

per pixel, C has a resolution of 0.8 meters per pixel.

Mapping architecture: In order to drive safely (e.g., nar-

row streets) we need a high resolution representation of our

maps, and at the same time a big receptive field to help

reduce uncertainty (e.g., around occlusions). To achieve

this efficiently, we employ a multi-resolution architecture

as shown in Fig. 2. It takes as input multiple feature maps

C1x, C2x, C from the backbone network (see Fig. 1), and out-

puts the 6 channels of the online map at the original input

*Denotes equal contribution

resolution of 0.2 m/pixel. As a reminder, the six channels

are: 1 for drivable area score, 1 for intersection score, 2

for truncated unsigned distance reachable lane (mean and

variance of Gaussian distribution), 2 for the angle to closest

reachable lane segment (location and concentration of Von

Mises distribution).

Perception and Prediction architecture: The different

dynamic classes (i.e. vehicles, pedestrians and bicyclists)

are processed by different networks since they have very

different geometry as well as motion. For each class, a

2-layer CNN processes C and upsamples it to 0.4 m/pixel.

This is the same resolution as C2x, which gets processed

by another 2-layer CNN. Then the two feature maps get

concatenated to form the dynamic context. From this context,

a 1-layer CNN outputs the current occupancy map, a 2-layer

CNN the motion mode scores for all time steps, and another

2-layer CNN the motion vectors for all modes and future

time steps. We employ dilation [8] to increase the receptive

field while keeping the number of parameters low in order

to be able to predict motion for voxels that are far away

from the original position of actors for the long temporal

horizons. To infer the future occupancy, we simply warp the

initial occupancy with the temporal motion field as explained

in the main manuscript’s Fig. 3.4., and further detailed in

Section 1.2. In practice, we found that K = 3 modes was

expressive enough for the multi-modality of the temporal

motion field. In all our experiments, T = 11 since we predict

the future 5 seconds at 0.5-second intervals.

Routing architecture: In order to drive towards a goal,

we would like to follow the driving commands. To do so,

we predict a route spatial map, where each cell represents

the probability that driving to it from the current location

is aligned with the driving command. The architecture for

the network that predicts such spatial map is detailed in

4. The high-level action in the command acts as a switch

between 3 instantiations of the same network architecture

(i.e., one for turning right, one for turning left, one for going



Figure 1: Backbone Network. The output features within one CNN block are fixed. All kernel strides and dilation are 1.
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Figure 2: Mapping Network. The output features within one CNN block are fixed. All kernel strides are 1.

straight). The longitudinal distance to action is repeated

spatially with the same resolution as the online map. Then,

both are concatenated to form the input to a CNN that lever-

ages Coordinate Convolutions (CoordConv) [2] in order to

be able to reason about the distance to a particular grid cell

from the SDV.

1.2. Dynamic occupancy

Here we provide a more detailed explanation of how our

dynamic occupancy flow works than in the main manuscript.

We first define a flow event from spatio-temporal grid cell

(t, i1) to (t+ 1, i2) as the intersection of the event that the

original grid cell is occupied, and that the motion field moves

this occupancy from (t, i1) to (t+ 1, i2). Since we consider

K motion modes, the final flow event considers the union of

those, effectively marginalizing over modes:

F(t,i1)→(t+1,i2) = ∪k{O
t
i1
∩ Kt

i1
= k ∩ Vt,k

i1
= i2}

Given this flow event definition and the assumptions in our
probabilistic model, we can obtain its probability:

p(Fc
(t,i1)→(t+1,i2)) =

∑

k

p(Oc
t,i1

)p(Kc
t,i1

= k)p(Vc
t,i1,k

= i2)

We can now calculate the future occupancy iteratively,

starting from the occupancy predictions at t = 0. Specif-

ically, to get the occupancy that flows into cell i at time

t+ 1 from all cells j at time t, we can simply compute the

probability that no occupancy flow event occurs, and take its

complement

p(Oc
t+1,i) = p

(

∪j F(t,j)→(t+1,i) : ∀k, l
)

= 1− p
(

∩j F
′

(t,j)→(t+1,i) : ∀k, l
)

= 1−
∏

j

(

1− p(Fc
(t,j)→(t+1,i))

)

where F
′

(t,j)→(t+1,i) denotes the complement of

F(t,j)→(t+1,i).

1.3. Planning

In this section we provide more details about trajectory

retrieval and the coring functions.

1.3.1 Trajectory Retreival

We use ∼ 150 hours of manual driving data to create the

dataset of expert trajectories. To group the trajectories into

different bins, we use the initial velocity v, curvature κ, and

acceleration a, with respective bin sizes of 2.0m
s

, 0.02 1
m

,

and 1.0m
s2

. The trajectories in each bins are clustered into

3, 000 sets and the closest trajectory to each cluster prototype

is kept. This creates a set fo diverse trajectories conditioned

on the current state of SDV. Figure 5 shows example sets of

trajectories retrieved base on the indicated initial state (initial

acceleration is 0.0 in all the cases). We can see how the set
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Figure 3: Perception and Prediction Network. It outputs the initial occupancy and current and future motion. The output

features within one CNN block are fixed. All kernel strides are 1.
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Figure 4: Routing Network. The output features within one CNN block are fixed. All kernel strides are 1. The architecture is

the same for the 3 branches, but with different learnable parameters.

of trajectories are influenced by the initial state, resulting in

kinematically-plausible trajectory sampling.

1.3.2 Trajectory Scoring

In the following, we provide more details about the cost

function of the planner.

Reachable-lanes direction In addition to stay close to the

lane centerlines, we promote trajectories that stay aligned

with the direction of the lane. Towards this goal, we use the

average difference of the trajectory point heading and the

angles in Mθ indexed at all BEV grid-cells that have overlap

with SDV polygon.

fd(x,M) = E
i∈m(x)

|Mθ
i − xθ|

where m(x) represents the spatial indices of BEV grid-cells

of the map-layer prediction that overlaps with SDV polygon

with state x.

Lane uncertainty In order to promote cautious behavior

when there is high uncertainty in MD and Mθ, we use a

cost function that is the product of the SDV velocity and the

standard deviation of the probability distributions of cells

overlapping with SDV in MD and Mθ. This promotes slow

maneuver in the presence of map uncertainty:

fd(x,M
θ,MD) =

∑

i∈m(x)

xv(σ
D
i +

1

kθi
)

Here σD
i denotes the standard deviation of the Gaussian

distribution representing distance to closest reachable lane

center, and kθi is the concentration parameter of the von

Mises distribution representing lane direction.

Occupancy Given the state of the ego car x for a single

time-step, we use the following cost function to penalize

trajectories that overlap with occupied regions:

fo(xt,O) =
∑

c

max
i∈m(xt)

P (Oc
t,i)

where m(xt) represents the BEV grid-cells, with semantic

class c, that have overlap with the polygon of SDV with state

xt.

Headway For the headway cost, we retrieve the set of

BEV grid-cells m(xt) that are within 20m in front of the
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Figure 5: Sets of trajectories retrieved from the expert demonstrations. The initial state of the SDV is used to query trajectories

that start with similar state (the initial acceleration is 0.0m
s2

in all the shown cases).

Loss Success OffRoute L2 Progress per event (m) ↑ Comfort

(%)↑ (%)↓ (m)↓ any event collision off-road off-route oncoming jerk(m

s3
)↓ lat.acc.(m

s2
)↓

Motion 68.90 11.59 13.10 171.53 545.59 991.81 514.30 1445.84 1.73 0.10

+ Occ. 74.39 14.63 12.95 218.40 1037.08 1136.49 409.34 1465.27 1.64 0.10

Table 1: Loss ablation for future dynamic occupancy (closed-loop simulation results). Adding supervision to the warped

occupancy drastically improves our model, compared to supervising only the motion field.

SDV at time t. The headway cost is then computed over this

set as follows:

fh(xt,O,K,V) =
∑

i∈m(xt)

P (Ot,i) E
P (Kt,i)

[h(xt,Vt,i)]

where the expectation is over the different motion modes.

The function h(xt,Vt,i) measures the violation of safety

distance if the object at spatial index i with speed Vt,i stops

with hard deceleration, and SDV with state xt reacts with a

comfortable deceleration.

1.4. Training details

Multi-task learning (1st stage): In the first stage we train

the backbone, mapping, perception and prediction as well

as routing networks. To do so, we linearly combine the

mapping loss LM, occupancy loss LO, motion loss LK,V ,

and routing loss LR described in the main manuscript.

Lstage 1 = LO + λK,VLK,V + λMLM + λRLR

where λK,V = 0.1, λM = 0.5, λR = 2.0 are hyperparame-

ters that were found to work well in practice in our validation

set. Within these task losses, all losses are summed with

equal weight (e.g., for mapping, the negative-log likelihood

for each map element has the same weight).

Trajectory Scoring (2nd stage): Since selecting the
minimum-cost trajectory within a discrete set is non-
differentiable, we use the max-margin loss [3, 4] to penalize
trajectories that have small cost but differ from the human

demonstration or are unsafe. Let τh be the expert demonstra-
tion for a given example. The max-margin loss encourages
the human driving trajectory to have smaller cost f than
other trajectories.

LM = max
τ

[

fr(τh)− fr(τ) + lim +
∑

t

[

f
t
o(τh)− f

t
o(τ) + l

t
o

]

+

]

+

where f t
o is the occupancy cost function at time step t, fr

are the rest of the planning subcosts, and []+ represents the

ReLU function. Note that in above, we dropped the other

inputs to the cost functions for brevity. The imitation task-

loss lim measures the ℓ1 distance between trajectory τ and the

ground-truth for the entire horizon, and the safety task-loss

lto accounts for collisions and their severity at each trajectory

step. By imposing the task-loss per time-step and separate

from the other non-safety subcosts, we make sure the margin

in cost is achieved when the trajectory is in collision (high

lto) irrespective of other costs at other time-steps.

2. Additional Experiments

2.1. Dynamic occupancy parameterization ablation

Our network only predicts the occupancy at t=0, and the

temporal motion field from t=0 to t=5s. The future occu-

pancy at times {0.5, 1.0, . . . , 5.0}s is computed by warping

the initial occupancy with the motion field. In this ablation,

we compare this with the parameterization in [4]. For be-

havior prediction metrics, the occupancy average F1 score

over time (0-5s) in URBANEXPERT’s test set is 73.7% for

MP3, and 71.3% for [4] on vehicles, and 46.3% vs. 44.1%



Routing Success OffRoute L2 Progress per event (m) ↑ Comfort

input (%)↑ (%)↓ (m)↓ any event collision off-road off-route oncoming jerk(m

s3
)↓ lat.acc.(m

s2
)↓

None 46.95 44.51 22.04 93.44 1614.09 1106.78 116.52 1402.32 1.85 0.07

+ action 67.68 19.51 13.47 166.58 935.18 1255.28 296.68 1132.53 1.75 0.09

+ dist. 74.39 14.63 12.95 218.40 1037.08 1136.49 409.34 1465.27 1.64 0.10

Table 2: Route ablation (closed-loop simulation results). Naturally, adding a discrete route command (action) allows the SDV

to better progress towards the goal. Moreover, complementing it with a noisy longitudinal distance to action is helpful.

Map & Success OffRoute L2 Progress per event (m) ↑ Comfort

route (%)↑ (%)↓ (m)↓ any event collision off-road off-route oncoming jerk(m

s3
)↓ lat.acc.(m

s2
)↓

GT 84.80 0.0 9.19 415.41 684.61 1822.48 ∞ 3689.89 1.53 0.15

Pred. 74.39 14.63 12.95 218.40 1037.08 1136.49 409.34 1465.27 1.64 0.10

Table 3: Upper bound performance in closed-loop simulation when using an HD map to feed the motion planner the true

online map and route.

Figure 6: Dynamic occupancy parameterization ablation.

Validation during training curves that showcase the power of

our dynamic occupancy when compared against that of [4].

on pedestrians. Moreover, the inductive bias of our flow

allows the model to learn faster, or equivalently with less

data (see validation curves in Fig. 6). These gains in occu-

pancy, together with the additional motion field output (used

to compute the headway score), result in better closed loop

driving with improved safety (>2x m. per collision) and

closer imitation to human (∼ 10% in L2).

2.2. Dynamic occupancy loss ablation

Our proposed model predicts multi-modal motion vectors

and their categorical distribution for each spatio-temporal

BEV grid cell, which is then used to flow the initial predicted

occupancy to the future steps. The most direct way of su-

pervising the predicted elements, i.e., initial occupancy and

temporal motion fields, is to have a separate loss for each

as they both have supervision from the labels, similar to the

loss in [5]. However, this has 2 main drawbacks. First, this

training strategy does not optimize future occupancy, which

is critical for safety in motion planning. Because the future

occupancy is obtained as a resulting of flowing (or warping)

the initial occupancy with the temporal motion field, small

errors in motion can accumulate over time. Second, only

the motion vector that is closest to the ground-truth gets

supervision, leaving the rest of the distribution over possi-

ble motions unsupervised. We implement this strategy and

ablate it against our training, where we also apply supervi-

sion to the future occupancy after flow, thus optimizing for

what we care about for safe driving, and also giving signal

to the full motion distribution. The results shown in Table 1

show a clear advantage of our training strategy. We would

like to highlight that this improvement in the loss makes the

model roughly twice as safe, as indicated by the progress

per collision metric. While it is true that we suffer a mi-

nor regression in route following probably to avoid some

collisions by deviating laterally, safety takes precedence.

2.3. Routing ablation

In order to show the importance of route prediction, we

consider (i) no route prediction, (ii) predicting the route map

based only on the input discrete high-level action coming

from the command through switching between different NNs,

(iii) also taking into account the approximate longitudinal

distance to action as explained in Fig. 4. Our results in Ta-

ble 2 show several interesting aspects. First, we see that only

by using the discrete high-level action (Action only), which

is the same information as the CIL and CNMP baselines use,

our model is able to achieve a much better route following

than those. In particular, while the best baseline, CNMP,

went 47.56% of the times off-route, our MP3 - Action only

ablation only goes out of route 19.51% of the times. Finally,

we see that adding the approximate distance to action and us-

ing CoordConv [2] such that the routing network can reason

about the distance from SDV further reduces the out-of-route

events to 14.63%. We note that the decrease in progress per

collision we observe when adding the route is due to the

fact that the base model is not constrained to the route, and

therefore can swerve outside the route without cost to avoid

collisions. In that case, our metrics only record an off-route

event for the breakdown. However, doing this consistently

would make any travel very frustrating since it would make

it impossible to reach the destination in time, and thus this is

not a reasonable option.



2.4. Upper bound with access to HD map

Table 3 showcases the results of our model when feeding

the motion planner with the ground-truth online map and

route map, instead of the predicted ones. For this experiment

we only retrain the motion planner weights for trajectory

scoring (i.e. the second stage in our training described in the

main manuscript). We note that the planner is still not receiv-

ing a perfect representation of the scene, as it needs to infer

the dynamic occupancy from sensor data. This experiment

shows several interesting aspects. We can see that with a

perfect map and route prediction, the proposed motion plan-

ner (including the retrieval-based trajectory sampler) always

follows the route. This experiment also confirms what we

have observed in the other ablations: sometimes diverging

from the route is an easier way to avoid collisions than a

change in the speed profile, as shown by the progress per

collision metric. Finally, this experiment confirms that the

proposed representations for the online map and the route,

as well as the motion planning costs are adequate, and moti-

vates future work to improve the prediction of the static part

of the environment.

3. Qualitative results

3.1. MP3 outputs in closed­loop simulation

Figures 7, 8 showcase a solid understanding of both the

static and dynamic parts of the environment through the on-

line map and dynamic occupancy predictions. These trans-

late into good routings and safe maneuvers from the motion

planner that are close to the expert demonstrations even after

unrolling our own plans for several seconds and therefore

deviating from the expert state.

Moreover, Figs. 9, 10, 11, 12 provide further insight into

the motion planner by additionally showing (a random subset

of) the retrieved trajectory samples as well as their cost in

a color map ranging from blue (lowest cost) to red (highest

cost) in the top right image. The optimal trajectory (i.e. the

one with the lowest cost) is plotted separately in the top left

image.

3.2. Plan comparison against baselines in closed­
loop simulation

Figures 13, 14, 15 compare the plans from our method

and those of the baselines in 3 different scenarios from our

closed-loop simulations. In these figures, the expert driver

state is shown in black for reference, and the plans in blue.

The path that should be followed by obeying the high-level

commands is shown in orange. Each column is a method,

and the rows represent a sequence of frames from a video (1

snapshot every 2.5 seconds of execution).

Please see our supplementary video for more compar-

isons.
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Figure 7: Qualitative results of MP3 in closed-loop. We show our predicted scene representations and motion plan in

different interesting scenarios. The black bounding box represents the state of the expert driver at that point, and we can see

it’s very close to the planner state (in blue)



Figure 8: More qualitative results of MP3 in closed-loop.



Figure 9: Yielding scenario at an intersection. Top right showcases a visualization of the cost of the retrieved trajectory

samples. The warmer the color the higher the cost.

Figure 10: Cruising scenario. As can be seen in the top right, the fast moving straight trajectories achieve the lowest score as

there is no one in front of the SDV.



Figure 11: Left turn scenario in which the SDV progresses fast.

Figure 12: Right turn scenario. We can see how the trajectory samples adapt to the current SDV velocity.



Figure 13: Planning comparison in closed-loop MP3 is the only method that follows the route and does not collide in this

example.



Figure 14: More planning comparison in closed-loop. MP3 is the only method that manages to effectuate the unprotected

left turn



Figure 15: More planning comparison in closed-loop. MP3 closely imitates the expert. CIL diverges from the route. TC

and CNMP stay on the route but collide with other vehicles.


