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In supplementary material, we provide additional de-
tails on dataset preparation and classifier training methods
for each classification task. We show additional qualita-
tive examples of the GAN reconstructions and the pertur-
bation methods investigated in the main text, at both fine
and coarse layers of the latent code. Finally, we provide
additional results investigating different experiment settings
and classifier training distributions under each type of latent
perturbation method.

1. Supplementary Methods

1.1. Pretrained generators

Unconditional GANs learn to mimic the image manifold
by transforming low dimensional latent codes to image out-
puts. A number of interesting properties emerge in these
generator networks, such as learning to model degrees of
variation in real data. We use pretrained StyleGAN2 gener-
ators [8] for our experiments. As class labels for images are
not required during GAN training, the generators are trained
on larger datasets than we would otherwise use for classifi-
cation – 5,520,756 images for LSUN Cars [15], 1,657,266
images for LSUN Cats [15], and 70,000 for FFHQ faces [7]
for the 512×384 resolution car, 256×256 resolution cat,
and 1024×1024 resolution face generators respectively.

1.2. Datasets

Face attribute classification We used the labeled
CelebA-HQ [12, 5] dataset containing 30000 faces with
40 labelled attributes. All face images are aligned by fa-
cial landmarks and cropped to square at 1024×1024 resolu-
tion. We follow the training, validation, and test splits used
in [12] on the 30,000 HQ images to obtain 24,183 images
for training, 2993 for validation, and 2824 for testing. Due
to the alignment and square cropping, we do not perform
any additional resizing or shifting operations prior to pro-
jection into the GAN, i.e., the GAN reconstructs the full
input image.

Car Shape Classification We derive our cars dataset
from [10], which in total contains 16,185 car images at the
granularity of Make, Model, and Year for each image. As
the GAN cannot recover fine-grained details for each image,
instead we take a subset of the labelled images and group
them into super-classes of “SUV”, “Sedan”, and “Cab” by
parsing the provided class name. Using this subset of three
super-classes, we divide the images into 2007 images for
training, 1007 for validation, and 1049 for testing; by split-
ting each fine-level class according to a 50%/25%/25% ra-
tio. Prior to projection into the GAN’s latent code, we first
rescale the width of each image to 512px, shift the image
to center the car using the provided bounding box, and then
perform a center crop on the shifted image to fit the GAN’s
aspect ratio (512×384 pixels). As the shifting operation
may introduce unknown pixels around the edges of the im-
age, the encoder and optimization step are both performed
with a masking input to account for these missing pixels [1].
Note that due to the GAN’s aspect ratio and the aspect ra-
tio of cars, there are parts of the image that may be cut out;
therefore at test time, we find that adding multiple random
image crops to ensemble improves classification.

Cat breeds classification The pets dataset from [13] con-
tains in total 37 breeds of cats and dogs, including 12 cat
breeds with 200 images per class. We subdivide the 200
images of each class into 100 images for training, 50 for
validation, and 50 for testing; this yields a total of 1200
images for training, 600 for validation and 600 for testing.
To preprocess the dataset, we align each image using face
attributes: we apply a face landmark detector on the im-
ages1, align the landmarks to a canonical pose, and crop to
256px; empirically we find that this improves both classifi-
cation performance and GAN reconstruction. Note that in
a few cases, the cat face is not correctly detected, resulting
in a poorly aligned image; even though these instances will
negatively impact classification, we do not remove them but
rather retain the full dataset. Similar to before, for the GAN

1https://github.com/zylamarek/frederic
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reconstruction process, the encoder and optimization steps
both use a masking input to account for missing pixels that
may occur during the alignment operation.

1.3. Classifier Training

Binary facial attribute classification For classification
of binary face attributes we follow the setup of Karras et
al. [8], which uses the GAN discriminator architecture as
the model for the attribute classification task. We also fol-
low the corresponding downsampling step which performs
a 4×4 average pooling operation prior to classification. We
train a classifier for each attribute from scratch (we also ex-
perimented with finetuning classifiers, and obtained similar
results). Random horizontal flipping is applied during train-
ing. We use the Adam optimizer [9] with default parameters
(learning rate 10−3, β1 = 0.9), and train until validation
accuracy does not increase for five epochs (most attributes
will finish training by 20 epochs). We use the same setup
when training from the image dataset as training from the
GAN-generated reconstructions: depending on the setting,
we simply replace the image x with the reconstructed im-
age G(w∗), or the perturbed latent G(w̃) before sending to
the classifier for training. We use the checkpoint with the
highest validation accuracy for further experiments.

Multi-class classification For the cat and car classifica-
tion tasks, we use a ResNet-18 [4] backbone with Ima-
geNet [14] pretrained weights for the feature extractor. We
modify the final linear layer to output the appropriate num-
ber of logits for each class – three classes for car classi-
fication, and 12 classes for cat breeds. First, we finetune
this model on the respective datasets. We use the Adam
optimizer [9] with initial learning rate 10−4 for the fea-
ture backbone and 10−3 for the linear classification layer
and β1 = 0.9. We then decay learning rate by 10× if
the validation accuracy does not increase for 10 epochs,
up to a minimum learning rate of 10−6. We use a max-
imum of 500 epochs for training, and record the check-
point with the highest validation accuracy for further ex-
periments. Next, to finetune a model on GAN-generated
samples, we start with this previous model finetuned on the
appropriate dataset and train with a reduced learning rate
10−6; with 50% probability for each batch, the model is
finetuned on the GAN reconstructions or real image sam-
ples. During the classifier training procedure we apply a
random resized crop with scale=[0.8, 1.0] and random hor-
izontal flipping. All images are cropped to square prior
to classification, at a resolution of 256×256 for cars and
224×224 for cats.

1.4. Perturbations in GAN Latent Code

For the isotropic and PCA direction perturbation meth-
ods, an additional hyperparameter is the extent of pertur-

bation allowed. For the isotropic perturbation, we scale
the variance σ of the added noise to ensure that the mod-
ified latent does not deviate too far from the starting latent.
For the PCA directions, we randomly sample a multiplier
β ∼ U [−σ, σ] that we use to scale the selected principle
component direction. We try a few values for each hyper-
parameter, selected so that the GAN-modified outputs are
similar to the input but with small distortions; we take the
best setting from validation data to apply on the test parti-
tion. Values for these hyperparameters are listed in Table 1.

Table 1: Hyperparameter values for isotropic and PCA latent per-
turbation methods. For the isotropic perturbation, we use a σ hy-
perparameter to scale the variance of the random noise added to
each optimized latent code. For the PCA perturbation method,
we use σ to denote a maximum magnitude for each principle
component applied, and sample a magnitude β randomly from
β ∼ U [−σ, σ]. For each model, we select a few discrete val-
ues for each hyperparameter to create small variations on the input
image without deviating too far from the input. We select the best
hyperparameter setting on validation data and use the same value
at test time.

Model
Isotropic
Coarse

Isotropic
Fine

PCA
Coarse

PCA
Fine

Car {1.0, 1.5, 2.0} {0.3, 0.5, 0.7} {1.0, 2.0, 3.0} { 1.0, 2.0, 3.0}
Cat {0.5, 0.7, 1.0} {0.1, 0.2, 0.3} {0.5, 0.7, 1.0} {0.5, 0.7, 1.0}
Face {0.1, 0.2, 0.3} {0.1, 0.2, 0.3} {1.0, 2.0, 3.0} {1.0, 2.0, 3.0}

2. Supplementary Results
2.1. Additional Qualitative Examples

In the main text, we define three methods for perturba-
tions in the latent code of a GAN: 1) adding isotropic Gaus-
sian noise, 2) moving along principle component axes [2],
and 3) style-mixing the optimized latent code with a random
latent code. We apply each type of perturbation respectively
to the coarse layers (first four style layers) or fine layers
(tenth and higher style layers) of the optimized latent code
w. In Fig. 1, we show qualitative examples of each type
of perturbation applied to the same base image in each do-
main. Note that the coarse layers correspond to positional or
shape changes, while the fine layers correspond to coloring
changes. Furthermore, the style-mixing operation, which
swaps in an entirely random latent code rather than adding
some offset to the optimized latent, achieves qualitatively
larger changes than the isotropic or PCA methods.

Reconstruction via GAN inversion is easier for images in
canonical poses and plain backgrounds that do not contain
uncommonly seen details. Fig. 2 visualizes the four best re-
constructed and the four worst reconstruction images in the
test split of each dataset, measured using the LPIPS percep-
tual distance metric [16]. The hardest images to reconstruct
contain text, large accessories on the head, or non-facial ob-
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Figure 1: Visualizing GAN perturbations. For the (a) Face, (b) Car, and (c) Cat domains, we show qualitative samples of an input image
(Input), which is centered, if necessary, prior to reconstruction by the GAN (Reconstruction). Once the latent code is optimized to obtained
the best reconstruction of the input, we perform three types of latent code modifications: isotropic, PCA, and style-mixing perturbations
at both coarse and fine layers of the latent code, where coarse-level manipulations alter pose and size, while fine-level manipulations alter
color.
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Figure 2: Visualizing the four best and worst reconstructions in the test split measured using LPIPS perceptual distance [16]. On each
domain, The best reconstructions tend to be in canonical poses with simple backgrounds, and the worst reconstructions have complex
backgrounds or textural details that the GAN cannot accurately recreate.
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Figure 3: The StyleGAN2 generator exhibits a bias towards cat faces, thus we find that projecting face-centered images using the GAN
yields better reconstructions than body-centered images. Furthermore, when the style-mixing operation is performed, the face-centered
images better preserve the identity of the cat on the modified images.

jects for the face domain. On the cat and car domains, the
difficult cases are detailed textures, complex backgrounds,
or unusual poses.

On the cat dataset, we preprocess all images by aligning

and cropping the face, as we find that the GAN has a facial
bias in reconstruction. We show examples in Fig. 3. Cen-
tering the same image on the face, rather than the body (we
use a MaskRCNN object detector [3] to obtain a bounding
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Reconstruct

36.83% 4.41% 73.57% 35.39% 13.63% 91.37% 2.55% 83.13% 23.67%6.33% 50.66%

31.41% 50.35% 26.65% 1.44% 11.51% 5.57% 5.75% 19.06% 21.37%31.30% 41.88%

Ground truth: 0 [not smiling]

 Ensembled: 30.6% Original: 56.4%
Original

56.36% 53.58% 9.94% 70.31% 32.07% 10.92% 2.44% 59.43% 19.99% 37.76%14.75%

Figure 4: A selected example in which the original image is predicted incorrectly (P (Smiling) > 0.5), but ensembling the classifier
predictions with style-mixing on fine layers recovers the ground-truth label (P (Smiling) < 0.5).

box for the cat), improves the GAN’s reconstruction. Fur-
thermore, we find that style-mixing in coarse layers better
preserves the identity of the cat when it is face-centered, as
opposed to body-centered.

In Fig. 4 we show an example of the fine layer style-
mixing augmentation in latent space where the original im-
age is misclassified but the ensemble recovers the correct
prediction. The classifier is sensitive to the variations in-
troduced by the style-mixing operation, which changes the
classifier’s incorrect prediction of the original image to the
correct one when averaging the predictions on the GAN-
generated views.

2.2. Additional Experiments: CelebA-HQ

Distribution of classification accuracies The CelebA-
HQ dataset [12] contains attribute labels for 40 binary clas-
sification tasks spanning a wide range of difficulty. The
hardest attribute to classify is “Big Lips” with a test of
53.58%, while 23 out of 40 attributes can attain a test ac-
curacy of over 90%. We show a distribution of the test ac-
curacy over all 40 attributes in Fig. 5.

Variations on ensemble weighting In the main text, we
introduce a weighting hyper-parameter α which balances
between using the original image for classification and the
GAN-generated variants. However, not all dataset images
can be reconstructed with the same fidelity. We investigate
an alternative ensembling approach, in which we also dis-
card the GAN-generated variants whose reconstruction er-
ror is greater than a certain percentile cutoff; this 2D space
is visualized in Fig. 6. In the main paper, we retain the
GAN-generated variants on all images and only use the en-
semble weighting α, which corresponds to a search over the
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Figure 5: Distribution of test accuracies for the 40 attribute clas-
sification tasks in the CelebA-HQ dataset. Most attributes (23 out
of 40) attain over 90% accuracy on the test partition, while the Big
Lips attributes has the test lowest accuracy at 53.58%.

right-most column in the 2D plot. However, we find that us-
ing the 2D search over ensemble weighting and reconstruc-
tion on the validation split performs similarly to the simpler
1D hyper-parameter search.

Optimization time vs. accuracy For the classifier to be-
have similarly on the GAN reconstruction and a given real
image, we desire the GAN’s version to be as similar to the
original image as possible. However, obtaining a close re-
construction via optimization is slow; we must balance be-
tween reconstruction quality and a computationally feasible
optimization budget over the dataset. As such we use an
encoder model to initialize the starting latent code, and then
optimize for 500 steps to improve the reconstruction. In
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Figure 6: Visualizing classification accuracy as a function of en-
semble weight and reconstruction similarity. In the main text,
we cross validate for an ensembling weighting parameter α be-
tween the original test image, and it’s GAN-reconstructed variants.
Here, we also explore reconstruction quality as an additional axis:
we discard the GAN-reconstructed ensemble if the reconstruction
similarity of the image is below a certain cutoff (0 corresponds to
using no reconstructed images, and 1 indicates using the GAN en-
semble for all images; the experiments in the main text correspond
to the right-most column of each grid.) White corresponds to stan-
dard classification accuracy, shades of red indicate increases in ac-
curacy, and shades of blue indicate decreases in accuracy. We find
that the classification is more sensitive to the ensemble weight-
ing α rather than reconstruction similarity, and using the 2D grid
search performs similarly to the simpler 1D search over ensemble
weight α.

Tab. 2, we compare the L1 and LPIPS reconstruction dis-
tance and classification accuracy of the reconstructed im-
ages as a function of the number of optimization steps.
While the reconstruction improves as more optimization
is performed, the accuracy plateaus after 250 optimization
steps, suggesting that a reduction in optimization time can
possible while obtaining similar classification results.

Ensembled classification accuracy: 40 attributes
When training the classifier, the standard approach is to

Table 2: Reconstruction similarity (L1, LPIPS) and accuracy for
the ‘Smiling’ attribute, vs. optimization steps. Classification ac-
curacy on images is 93.6%.

Opt. Steps 0 50 100 150 200 250 500
L1 0.172 0.104 0.092 0.086 0.083 0.080 0.073
LPIPS 0.443 0.252 0.219 0.201 0.188 0.179 0.152
Acc 92.2 93.2 93.2 93.2 93.5 93.6 93.4

train on the image dataset – in this case, if GAN-generated
images are added as part of the ensemble at test time, there
is potentially a domain gap as the classifier has never seen
GAN images during training. However, the face domain is
fairly simple for the generator to reconstruct; adding fine
layer style-mixing of images at test time, even without a
classifier trained on GAN images, outperforms the base-
line of testing on a single image when averaged over 40
attributes. Adding additional color and spatial jitter to the
image at test time offers a further boost. Using this set-
ting, we sort the attributes based on how much ensembling
at test time helps in Table 3; the highest difference between
ensembled test accuracy and standard test accuracy (classi-
fying a single image) indicates the attribute where ensem-
bling increases accuracy the most, while the lowest differ-
ence indicates where ensembling helps the least and can
harm classification. There are a few attributes that notably
do not benefit from ensembling: some accessories (Wearing
Hat, Wearing Necklace) which can be difficult for the GAN
to reconstruct, while several color-based attributes (Black
Hair, Brown Hair, Gray Hair) also do not benefit from the
fine layer style-mixing operation, which can cause color
changes.

Alternative projection algorithms Rather than using the
1024px pre-trained StyleGAN2 [8], we also run the same
experiments using a 256px StyleGAN and the In-domain
inversion algorithm [17]. This method is designed for fast
image projection, and combined with a smaller resolution
GAN, reduces the computational cost of inverting real im-
ages and creating the GAN-generated variations. Over the
40 facial attributes, the results are correlated (Fig. 7). On
average over 40 attributes, using the optimization procedure
in the main text achieves 0.07 accuracy gain using fine layer
style-mix augmentation only at test time, and 0.13 gain us-
ing fine style-mix combined with image augmentations at
test time; with the In-domain inverter, the average accuracy
gain is 0.10 for both fine layer style-mix augmentation only
and fine style-mix combined with image augmentations at
test time. Thus, we are able to obtain a similar result, but
with a lower computational overhead.

Training distributions Although we find that there are
improvements when using GAN-generated views at test
time, even when the classifier is only trained on real face
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Table 3: Comparison of standard test accuracy and ensembled test accuracy on classifiers trained on images, using the combined GAN
augmentation at test time on 40 facial classification attributes. This augmentation consists of style-mixing at fine layers, and small color
and spatial jittering. Attributes are sorted in order from highest difference (ensembling helps the most), to lowest difference (ensembling
harms classification).

Attribute Standard Test
Accuracy

Ensembled
Test Accuracy Difference Attribute Standard Test

Accuracy
Ensembled

Test Accuracy Difference

1: Wearing Lipstick 93.17 94.47 1.30 21: Wearing Earrings 85.20 85.21 0.02
2: Wavy Hair 74.29 75.26 0.96 22: Bald 98.26 98.28 0.01
3: High Cheekbones 85.48 86.40 0.92 23: Mustache 95.89 95.90 0.00
4: No Beard 94.83 95.47 0.64 24: Blurry 99.68 99.68 0.00
5: Goatee 95.82 96.23 0.41 25: Bushy Eyebrows 91.50 91.50 -0.00
6: Arched Eyebrows 81.59 81.95 0.36 26: Double Chin 94.48 94.47 -0.00
7: Male 97.31 97.65 0.34 27: Attractive 78.82 78.82 -0.01
8: Mouth Slightly Open 93.52 93.83 0.31 28: Chubby 94.37 94.36 -0.01
9: Smiling 93.59 93.89 0.30 29: Pale Skin 97.17 97.15 -0.01
10: Young 87.50 87.74 0.24 30: Rosy Cheeks 91.64 91.61 -0.03
11: Eyeglasses 99.29 99.50 0.21 31: Bangs 95.15 95.11 -0.04
12: Bags Under Eyes 81.98 82.15 0.17 32: Pointy Nose 72.24 72.18 -0.06
13: Sideburns 96.67 96.83 0.16 33: Gray Hair 98.37 98.28 -0.09
14: 5 o Clock Shadow 92.71 92.84 0.13 34: Receding Hairline 92.63 92.55 -0.09
15: Big Nose 76.95 77.08 0.13 35: Wearing Necklace 81.02 80.92 -0.10
16: Heavy Makeup 89.09 89.22 0.13 36: Brown Hair 86.61 86.49 -0.13
17: Blond Hair 94.30 94.37 0.07 37: Narrow Eyes 86.15 86.02 -0.13
18: Oval Face 79.32 79.36 0.04 38: Black Hair 89.41 89.14 -0.27
19: Wearing Necktie 95.47 95.50 0.04 39: Wearing Hat 98.58 98.29 -0.29
20: Straight Hair 80.38 80.42 0.04 40: Big Lips 53.58 53.05 -0.52
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Figure 7: Comparison of StyleGAN2 [8] generator with a sepa-
rately trained encoder, and the In-domain inversion method [17].
We plot the accuracy difference between using GAN-based en-
sembling at test time and standard test accuracy for both meth-
ods, where style-mixing augmentation is shown in blue, and com-
bined style-mixing and image augmentations is shown in orange.
Over the 40 attribute classification tasks, the accuracy gains of the
two methods are similar (Pearson r = 0.69, p < 0.001), but the
smaller resolution of the In-domain GAN allows for faster inver-
sion and inference.

images, we also investigate different training variations for
the face attribute classifiers (Fig. 8), such as training the
classifier using GAN-reconstructed images and perturbed
reconstructions. On average over 40 attributes, we find that

adding the style-mixing ensemble is more beneficial when
the classifier is also trained on the GAN reconstructions,
compared to when these classifiers are trained only on im-
ages. The results of applying fine style-mixing while train-
ing these classifiers are mixed and less beneficial than train-
ing on the GAN reconstructions alone. This is likely due to
the inability of fine-level changes to preserve the the classi-
fier boundaries for certain attributes, such as those based on
color. In Fig. 9, we show examples of two attributes where
training with fine-level style-mixing improves classification
(Wavy Hair and Young), and two attributes where such an
adjustment in the latent code is harmful (Black Hair and
Brown Hair). In the latter case, we find that training the
classifier with coarse-level isotropic jittering outperforms
training the classifier with fine-level style-mixing, as fine-
level adjustments in color may create samples inconsistent
with the original class label.

Additional attributes: ensemble size When ensembling
on face attributes, we use an ensemble size of 32 images.
In Fig. 10, we plot the classification accuracy as a func-
tion of the number of ensembled images on four attributes
that benefit from test-time ensembling with GAN-generated
views (Smiling, Arched Eyebrows, Wavy Hair, and Young).
Generally, increasing the number of images in the ensem-
ble improves performance up to a certain point, saturating
around an ensemble size of 16 GAN samples.
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Figure 8: Classifier training variations, averaged over 40 facial attributes. (Left) We plot the average classification accuracy when
the classifier is trained only on images (Train Image), trained on optimized latent codes corresponding to each image (Train Latent),
trained with fine-layer style-mixing (Train Style-mix) and trained with style-mixing and a combination of color and spatial jitter (Train
Combined). We evaluate using an ensemble of style-mixed samples, or the combined augmentation (different colored bars). (Right)
As there is large variation in the classification accuracy of individual attributes (see Fig. 5), we also plot the difference in classification
accuracy for each setting, compared to a classifier trained on images and evaluated on a single image. While training on the optimized
latent codes outperforms training on images, we find that results on style-mixing during training are mixed, as some attributes are sensitive
to the style-mixing operation (we show examples in Fig. 9). Error bars indicate standard error over all 40 attributes.
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Figure 9: Classifier training variations on individual attributes. (Top) We show two attributes (Wavy Hair and Young) where training with
the fine-level style-mixing outperforms training on the original images and the optimized latent code. (Bottom) However, style-mixing
during training is harmful for some attributes, such as Black Hair and Brown Hair, where the color adjustment introduced by changing
the latent code may create inconsistencies with the image label. For the Black Hair attribute, training with isotropic jittering in coarse
layers performs best, while for Brown Hair, training on the latent codes, without additional GAN-based augmentations, is better. For the
Black Hair and Brown Hair attributes, we plot test accuracy using coarse-level isotropic jittering as the type of GAN augmentation, which
performs better than fine-level style-mixing, except in the case when the classifier is trained with the fine-layer style-mixing augmentation
(Train Style-mix).

Additional attributes: image corruptions We show re-
sults on the same four attributes (Smiling, Arched Eye-
brows, Wavy Hair, and Young), when the input image is cor-

rupted prior to classification (Fig. 11). We project the cor-
rupted image through the GAN to obtain the reconstructed
image, and perform style-mixing on the fine layer to create
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Figure 10: Effects of ensemble size. Classification accuracy as a function of the number of ensembled deep generative views, on four
facial attributes that benefit from GAN-augmented views at test time. Zero views corresponds to using the original input image and adding
more views increases accuracy up to a certain point. We use a total of 32 images (1 dataset image and 31 GAN views) in our experiments,
as performance saturates. The shaded region corresponds to standard error over random draws of the ensemble elements.
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Figure 11: Robustness to corruptions. We show accuracy on a corrupted image (Image), the GAN reconstruction (Reconstruction),
ensembling with GAN style-mixing (Style-mix Ensemble), and ensembling over both traditional and GAN views (Combined Ensemble).
(top) On clean images, deep views increase performance across the 4 facial attributes. We test against different types of corruptions: jpeg,
Gaussian blur, and Gaussian noise. The results on untargeted corruptions are mixed; in 6 of 12 cases, ensembling improves performance.
(bottom) Adversarial attacks (FGSM, PGD, CW) greatly reduce accuracy. On all cases, just GAN reconstruction recovers significant
performance. In the majority of cases, ensembling further improves performance.

an ensemble (Style-mix Ensemble). We also ensemble by
combining style-mixing and traditional crop and color jitter-
ing (Combined Ensemble). On untargeted corruptions, the
result of ensembling using GAN augmentations is mixed.
Accuracy improves on JPEG and Blur corruptions for the
Smiling and Arched Eyebrows attributes, but it does not
improve for the Wavy Hair/Young attributes (in fact, Wavy
Hair accuracy is higher on the corrupted images than clean
images as the classifier is not impaired by the corruption).
In the case of Gaussian Noise, classification of the recon-
structed image drops, as the projection procedure fails to

find a good reconstruction of the noisy image; thus adding
GAN perturbations at test time only helps in one out of four
attributes (Arched Eyebrows). Note that the classifier is not
greatly sensitive to these types of corruptions: classifica-
tion accuracy between the clean images and the corrupted
ones are largely similar, this may be due to the initial down-
sampling operation on the attribute classifiers following [7],
which may reduce the effect of these corruptions. In the tar-
geted corruption setting, the benefits of GAN reconstruction
and ensembling is more pronounced. Using the GAN recon-
struction rather than the corrupted image increases classifi-
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Figure 12: Classifier training variations: cars. Starting with a classifier trained on image crops (Original Images), we finetune the classifier
using different types of images projected through the generator’s latent code – either GAN Reconstructions or manipulated latent codes
using the isotropic, PCA, or style-mixing augmentations at coarse or fine layers during training (along the x-axis). At test time, we then
evaluate with an ensemble of different types of GAN perturbations and image crops (different colored bars). On the car domain, we
find that adding GAN augmentations only at test time, when the classifier is only trained on dataset images, offers a small increase in
accuracy, but there are greater benefits when the classifier is further finetuned on GAN images. In particular, using the fine layer style-
mixing augmentation is most beneficial at training and test time. Error bars indicate standard error over 20 bootstrapped samples from 32
ensemble elements.

cation accuracy on these corrupted images, and in the ma-
jority of cases, ensembling multiple views from the GAN
further improves performance.

2.3. Additional experiment settings: cars

Training distributions In the main text, we focus on the
fine-level style-mixing augmentation when finetuning the
classifier on generated samples, which corresponds to small
color changes, such as changing the color of the car. In
Fig. 12 we show results on finetuning the classifier with the
remaining isotropic, PCA, and style-mixing augmentations,
at both coarse and fine layers. On the car domain, we find
that training on fine layer perturbations tend to outperform
training on coarse layer perturbations, and at test time, en-
sembling with fine layer style-mixing augmentations is best.
As using multiple image crops in the ensemble consistently
increases classification accuracy, we use a combination of
16 image crops and 16 cropped and perturbed GAN recon-
structions when ensembling using the GAN output.

Effect of image augmentations When training the clas-
sifier, we use standard random resize, crop, and horizontal
flip following the transformations used in ImageNet train-
ing2. Here, we also investigate the effect of an additional
image rotation augmentation, at both training and test time
(we use a random rotation between -10 and 10 degrees prior

2https : / / github . com / pytorch / examples / blob /
master/imagenet/main.py

to the previous transformations of resizing, cropping, and
flipping). When trained on resize, crop, and flip transfor-
mations on images, ensembling GAN augmentations out-
performs image multi-crop classification using the crop and
scale+crop augmentations at test time. Next, we train a clas-
sifier using rotate, resize, crop, and flip transformations on
images; in this case, the using the scale+crop test-time aug-
mentation on images attains the highest accuracy. We then
finetune these classifiers by also training on the GAN gener-
ated variants: here, combining image and GAN augmenta-
tions at test time outperform test-time image augmentations
alone, but the accuracy of these finetuned classifiers is lower
than the highest accuracy attained by the classifier trained
on images with the rotate augmentation (Fig. 13). Given
the current limitations in GAN reconstruction ability, this
suggests that carefully chosen image augmentations during
training can slightly outperform the benefits of GAN-based
augmentations at test-time.

2.4. Additional experiment settings: cats

Training distributions We use a similar setup for the cat
classification task as the cars task. Fig 14 shows the clas-
sification result, trained on the Original Images (left), and
finetuned on GAN reconstructions or each type of pertur-
bation method. In this domain, we find that training with
the coarse layer style-mix augmentation offers the largest
benefit image classification accuracy, and furthermore, en-
sembling with this same augmentation offers an additional
increase in accuracy. Unlike the car domain, the cat im-
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Figure 13: Comparing image and GAN augmentations during training: cars. We investigate the effect of various image augmentations
during classifier training and at test time. (a) We first train a classifier on the cars dataset following the ImageNet training transformations,
which include random resize, crop, and horizontal flip; applying GAN augmentations at test time can slightly outperform using only
image augmentations. (b) Next, we add a random rotate transformation in addition to the previous image transformations during classifier
training, and again train on the image dataset; this classifier outperforms the previous classifier, and in this case ensembling images with
the scale+crop augmentation at test time is the best. When the classifiers are trained with GAN images, either with the standard training
transformations (c) or the additional rotate transformation (d), adding GAN augmentations outperforms using image augmentations at test
time, but the classifier’s overall accuracy is lower. This suggests that carefully chosen image augmentations during classifier training can
still slightly outperform the benefits of GAN-based augmentations at test-time, due to current limitations in image reconstruction using
GANs.

Original
Images

GAN
Recontructions

Isotropic Fine
Augmentations

Isotropic Coarse
Augmentations

PCA Fine
Augmentations

PCA Coarse
Augmentations

Style-mix Fine
Augmentations

Style-mix Coarse
Augmentations

Classifier training distribution

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

Cats
Image Single Crop
Image Multi Crop

Isotropic Coarse
Isotropic Fine

PCA Coarse
PCA Fine

Style-mix Coarse
Style-mix Fine

Figure 14: Classifier training variations: cats. Similar to the car domain, we start with a classifier trained on image crops (Original Images)
and then finetune the classifier using different types of images projected through the generator’s latent code – either GAN Reconstructions
or manipulated latent codes using the isotropic, PCA, or style-mixing augmentations at coarse or fine layers during training (along the
x-axis). At test time, we then evaluate with an ensemble of different types of GAN perturbations and image crops (different colored bars).
On the cat domain, we find that using coarse layer style-mixing offers the highest classification accuracy; it increases image classification
accuracy on the test set compared to training the classifier only on image crops, and ensembling using the GAN outputs offers a small
additional increase. Error bars indicate standard error over 20 bootstrapped samples from 32 ensemble elements.

ages are preprocessed to align and center the face, and
so empiricially the benefits of ensembling multiple image
crops are less consistent. When ensembling with GAN aug-
mentations, we take the original center-cropped image, and
31 perturbed views from the GAN that are averaged and
weighted with ensemble weight hyperparameter α.

2.5. GAN augmentations with CIFAR10

We use a class-conditional StyleGAN2 [6] to conduct
preliminary experiments on the CIFAR10 dataset [11] (we
also tried the unconditional CIFAR StyleGAN, but obtained
poorer reconstructions). We first reserve the final 5000
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Figure 15: Classifier training variations: CIFAR10. With a clas-
sifier trained on the CIFAR10 training split, standard test clas-
sification accuracy and adding GAN augmentations at test time
perform similarly. When the classifier is then finetuned on GAN
reconstructions or perturbed GAN reconstructions, adding GAN
augmentations at test time offers a small improvement over stan-
dard image classification, but the overall classification accuracy is
lower, suggesting that the GAN reconstructions cannot perserve
the true class well enough to match the classification perfor-
manance of the CIFAR10 dataset simages.

training images for validation, and train a Resnet-18 classi-
fier on the remaining 45000 training images, which achieves
accuracy of 95.04% on the CIFAR10 test set3. To project
the 32x32 images into the GAN latent space, we first predict
the class of each image, use the averageW latent of the pre-
dicted class to initialize optimization, and optimize for 200
steps, taking about eight seconds per image. We show qual-
itative examples of CIFAR10 test images, and their GAN
reconstructions, and the result of swapping a random latent
code, i.e. style-mixing, corresponding to the same predicted
class at the seventh and eighth layers in Fig. 16 (the GAN
has a total of eight layers). When the classifier is trained
only on real images, we find that classifying the recon-
structed test images is harder than the real images (accuracy
drops from 95.04% to 84.68%). With the ensemble weight-
ing hyperparameter α, we find that while the validation split
has a small increase in classification accuracy of 0.04%, al-
though when applying this same ensemble weight to the test
split, the accuracy increase is only 0.01%. However, using
the optimal α weight on the test split increases accuracy
by 0.05%. We then finetune the classifier on GAN recon-
structions of the training set, and additionally perform style-
mixing in the seventh and eighth layers. When trained with
style-mixing, adding GAN-generated views at test time can
outperform standard image classification, but note that the
overall accuracy of the classifier is lower (Fig. 15). These

3https://github.com/kuangliu/pytorch-cifar

initial results suggest that the GAN reconstructions cur-
rently not perserve the true class well enough to attain the
same performance as classification of CIFAR10 images,
and due to the smaller resolution of the CIFAR10 Style-
GAN, the style-mixing operation in later layers may not be
sufficiently disentangled from class identity to offer bene-
fits when ensembling at test time, comparing to classifying
images directly.

12

https://github.com/kuangliu/pytorch-cifar


(a) CIFAR 10 Images (b) GAN Reconstructions

(c) Style-mix layer 7 (d) Style-mix layer 8

Figure 16: Qualitative examples of CIFAR10 GAN reconstructions. (a) CIFAR10 images from the test set, (b) the GAN reconstructions
of the test images (c) swapping the reconstructed latent code with a random latent code from the same predicted class (style-mixing) at
layer 7, and (d) style-mixing at the final layer.
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