
Supplementary material: Truly shift-invariant convolutional neural networks

A. Non-linear activation functions and shift in-
variance

We saw in Section 3.2 of the paper that anti-aliasing a
signal before downsampling restores sum-shift-invariance.
In particular, consider a 1-D signal x0(n) and its 1-pixel
shift x1(n) = x0(n − 1). Anti-aliasing the two signals
(with an ideal low pass filter) followed by downsampling
with stride 2 results in ya0 (n) and ya1 (n) with DTFTs

Y a0 (ω) =
X0(ω/2)

2
, Y a1 (ω) =

X0(ω/2)e−jω/2

2
, (1)

that satisfy Y a0 (0) = Y a1 (0). Azulay and Weiss pointed
out in [1] that the sum-shift invariance obtained via anti-
aliasing is lost due to the action of non-linear activation
functions like ReLU in convolutional neural networks.
They postulated that this happens through the generation of
high-frequency content after applying ReLU. We elaborate
on this phenomenon here and also show that high frequen-
cies alone do not provide a full picture.

Let g(·) be a generic pointwise non-linear activation
function applied to the outputs of anti-aliased downsam-
pling. Owing to the pointwise nature of g, the stride
operation and the non-linearity can be interchanged,
making the network block in Fig. 1(a) equivalent to the one
in Fig. 1(b). Notice in Fig. 1(b) that despite anti-aliasing
x0 with an ideal low pass filter LPF, g generates additional
high frequencies which can result in aliasing on downsam-
pling. One can not simply use another low pass filter to
get rid of these newly generated aliased components. For
example, a new low pass filter block added after g in Fig.
2(a) can be interchanged with the stride operation to result
in a dilated filter which is not low pass any more (Fig. 2(b)).

While high frequencies generated by non-linear activa-
tions can lead to invariance loss for various choices of
g, we show in Section A.1 that this might not always be
necessary. For example, polynomial activations, despite
generating aliased components, do not impact sum-shift-
invariance. Therefore, in addition to its high frequency
generation ability, we also take a closer look at how the
ReLU non-linearity affects sum-shift invariance in terms of
its thresholding behavior in Section A.2.

(a)

≣

(b)

LPF"! Stride-2 #(⋅)
'!" #('!")

LPF"! #(⋅) Stride-2 #('!")

Figure 1. Pointwise non-linearity g can be interchanged with the
stride operation. Despite anti-aliasing x0 with LPF block, g gener-
ates high frequencies which can lead to additional aliasing during
downsampling.

LPF#! Stride-2 $(⋅)
(a)

≣

LPF#! $(⋅) Dilated
filter

(b)

Stride 2

LPF

(a)

≣

LPF"! Stride-2 #(⋅) LPF

(b)

LPF"! #(⋅) Stride-2Dilated
filter

Figure 2. Additional low pass filtering after g in (a) does not elim-
inate the impact of aliasing. This is because, as shown in (b),
interchanging the final LPF block with stride operation, results in
a dilated version of the filter which is not low-pass any more.

A.1. Action of polynomial non-linearities on sum-
shift invariance

In Theorem 1 from Section 3.2 in the paper, we stated
that for any integer m > 1, non-linear activation functions
of the form g(y) = ym do not impact sum-shift-invariance.
We provide the proof below.

Proof. Let the DTFTs of z0 = g(ya0) and z1 = g(ya1) be
Z0(ω) and Z1(ω). Then by definition of the DTFT,

Z0(0) =
∑
n∈Z

z0(n), and Z1(0) =
∑
n∈Z

z1(n). (2)

Since z0 = (ya0)m, and z1 = (ya1)m, we have

Z0(ω) =
(
Y a0 (ω) ~ Y a0 (ω) ~ . . .~ Y a0 (ω)︸ ︷︷ ︸

m times

)
, (3)

Z1(ω) =
(
Y a1 (ω) ~ Y a1 (ω) ~ . . .~ Y a1 (ω)︸ ︷︷ ︸

m times

)
, (4)

where ~ represents circular convolution. For i ∈ {0, 1},
we can write

Zi(ω) =(1

2π

)m−1 ∫ π

−π
· · ·
∫ π

−π
Y ai (α1) · · ·Y ai (ω −

m−1∑
i=1

αi)dᾱ,

(5)

where ᾱ = (α1, α2, . . . αm−1). From (1), we have

Y a1 (ω) = Y a0 (ω)e−jω/2. (6)

Using (5) and (6), we can write Z1(ω) = Z0(ω)e−
jω
2 ,

which when combined with (2) gives∑
n∈Z

z0(n) =
∑
n∈Z

z1(n). (7)

Using linearity of Fourier transform, the result in The-
orem 1 can be extended to arbitrary polynomial activation
functions of the form g(y) =

∑m
i=0 aiy

i with m > 1.

A.2. ReLU spoils sum-shift-invariance

We now consider the ReLU non-linear activation
function, h(y) = relu(y), which clips all negative values
of signal y to zero. Unlike the case with polynomials in
Section A.1, deriving a closed form expression for the
DTFTs of h(ya0) and h(ya1), for arbitrary x0 and x1 is
non-trivial. We therefore analyze a simpler case where
x0 is assumed to be a cosine signal, and illustrate how
sum-shift invariance is lost due to ReLUs.

Let x0 be an N length 1-D cosine and x1 = x0(n − 1)
be its 1-pixel shift. We define the two signals as

x0 = cos
(2πn

N

)
, and x1 = cos

(2π(n− 1)

N

)
(8)

n ∈ {0, 1, . . . N − 1}.

For any N > 4, x0 satisfies the Nyquist criterion and
is anti-aliased by default. For N ′ = N/2 and n ∈

{0, 1, . . . N ′ − 1}, the downsampled outputs ya0 and ya1 are
then given by

ya0 (n) = x0(2n) = cos
(2πn

N ′

)
, (9)

ya1 (n) = x1(2n) = cos
(2π(n− 1/2)

N ′

)
. (10)

Note that ya0 and ya1 are structurally similar signals, and can
be interpreted as half-pixel shifted versions of each other.
The action of h on yai can be regarded as multiplication
by a window which is zero for any n where yai (n) < 0.
We construct sets {S+

i }1i=0 containing n where yai (n) > 0.
For simplicity in constructing the sets, we assume N ′ > 6
and divisible by 4 (similar conclusions from below can be
reached without these simplifying assumptions as well).
Then we have

S+
0 =

{
n : n ∈ Z, n ∈

[
0,
N ′

4
− 1
]
∪
[3N ′

4
+ 1, N ′ − 1

]}
,

(11)

S+
1 =

{
n : n ∈ Z, n ∈

[
0,
N ′

4

]
∪
[3N ′

4
+ 1, N ′ − 1

]}
.

(12)

Notice that the supports S+
0 and S+

1 differ by 1 pixel near
n = N ′

4 . This is because despite being structurally similar,
ya0 and ya1 have slightly different zero crossings, which re-
sults in some differences in the support of thresholded out-
puts. We can now compute the sums

∑
h(ya0) and

∑
h(ya1).∑

n∈Z
h(ya0)(n) =

∑
n∈S+

0

cos
(2πn

N ′

)
(13)

= Re
(∑
n∈S+

0

ej
2πn
N′
)

(14)

=
cos(2π/N)

sin(2π/N)
. (15)

Similarly,
∑
n∈Z h(ya1)(n) is given by

∑
n∈Z

h(ya1)(n) = Re
(∑
n∈S+

1

e
j2π(n−1/2)

N′
)

(16)

= Re
(
e−

jπ
N′
∑
n∈S+

1

ej
2πn
N′
)
. (17)

We can rewrite (17) in terms of (14), and get

∑
n∈Z

h(ya1)(n) (18)

= Re
(
e−

jπ
N′
∑
n∈S+

0

ej
2πn
N′ +e−

jπ
N′ e

j2πn
N′ |n=N ′/4

)
(19)

= cos
(2π

N

)∑
n∈Z

h(ya0)(n)+ sin
(2π

N

)
. (20)

Input

3×3, conv, 64

3×3, conv, 64

3×3, conv, 64

3×3, conv, 64

3×3, conv, 64

3×3, conv, 128, /2

3×3, conv, 128

3×3, conv, 128

3×3, conv, 128

3×3, conv, 256, /2

3×3, conv, 256

3×3, conv, 256

3×3, conv, 256

Global avg
pooling

FCN, 10

Output

3×3, conv, 512, /2

3×3, conv, 512

3×3, conv, 512

3×3, conv, 512

3×3, conv, 16

3×3, conv, 16

3×3, conv, 16

3×3, conv, 16

3×3, conv, 16

3×3, conv, 32, /2

3×3, conv, 32

3×3, conv, 32

3×3, conv, 32

3×3, conv, 64, /2

3×3, conv, 64

3×3, conv, 64

3×3, conv, 64

Global avg
pooling

FCN, 10

Output
(a)

CIFAR-10 and imagenet RESNET ARCH

Input Input

7×7, conv, 64, /2

3×3, conv, 64

3×3, conv, 64

3×3, conv, 64

3×3, conv, 64

3×3, conv, 128, /2

3×3, conv, 128

3×3, conv, 128

3×3, conv, 128

3×3, conv, 256, /2

3×3, conv, 256

3×3, conv, 256

3×3, conv, 256

Global avg
pooling

FCN, 1000

Output

3×3, conv, 512, /2

3×3, conv, 512

3×3, conv, 512

3×3, conv, 512

maxpool, /2

(b) (c)

Figure 3. Illustration of baseline ResNet architectures used in our
experiments. (a) ResNet-20, (b) ResNet-18 used in CIFAR-10
classification. (c) Baseline ResNet-18 used in the ImageNet clas-
sification experiments.

(20) illustrates the loss in sum-shift-invariance caused by
ReLU. Notice that the differences in

∑
h(ya0) and

∑
h(ya1)

arise due to minor differences in the signal content in ya0
and ya1 , which are amplified by ReLU. The term sin(2π/N)
arises due to a 1-pixel difference in the supports of h(ya0)
and h(ya1), whereas the cosine term is associated with
e−jω/2 from (1), again depicting the impact of small dif-
ferences in ya0 and ya1 .

B. Implementation details
We trained ResNet models with APS, anti-aliasing

and baseline conventional downsampling approaches on
CIFAR-10 and ImageNet datasets, and compared their
achieved classification consistency and accuracy. For
CIFAR-10 experiments, four variants of the architecture
were used: ResNet-20, 56, 18 and 50. ResNet 20 and 56
were originally introduced in [2] for CIFAR-10 classifi-
cation and are smaller models with number of channels:
{16, 32, 64} in different layers, and use stride 2 twice,
which results in a resolution of 8 × 8 in the final convo-
lutional feature maps. On the other hand, ResNet-18 and
50 contain {64, 128, 256, 512} number of channels, and

downsample three times with a stride 2, resulting in final
feature map resolution of 4× 4. Similar to the experiments
with CIFAR-10 in [2], we use a convolution with stride 1
and kernel size of 3 × 3 in the first convolutional layer. In
all architectures, global average pooling layers are used
at the end of the convolutional part of the networks. Fig.
3(a)-(b) illustrate the baseline architectures of ResNet-20
and 18 used in our experiments.

The original training set of the CIFAR-10 dataset
was split into training and validation subsets of size 45k
and 5k. All models were trained with batch size of 256
for 250 epochs using stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 5e−4. The initial
learning rate was chosen to be 0.1 and was decayed by a
factor of 0.1 every 100 epochs. Training was performed
on a single NVIDIA V-100 GPU. All the models were
randomly initialized with a fixed seed before training. The
models with the highest validation accuracy were used for
evaluation on the test set.

For ImageNet classification, we used standard ResNet-
18 model as baseline whose architecture is illustrated in
Fig. 3(c). In all experiments, input image size of 224× 224
was used. The models were trained with batch size of 256
for 90 epochs using SGD with momentum 0.9 and weight
decay of 1e−4. An initial learning rate of 0.1 was chosen
which was decayed by a factor of 0.1 every 30 epochs.
The models were trained in parallel on four NVIDIA
V-100 GPUs. We report results for models with the highest
validation accuracy.

We were able to show significant improvements in con-
sistency and accuracy with APS over baseline and anti-
aliased downsampling without substantial hyper-parameter
tuning. Further improvements in the results with better
hyper-parameter search are therefore possible.

B.1. Embedding APS in ResNet architecture

We replace the baseline stride layers in the ResNet ar-
chitectures with APS modules. To ensure shift invariance, a
consistent choice of polyphase components in the main and
residual branch stride layer is needed. APS uses a permu-
tation invariant criterion (like argmax) to choose the com-
ponent to be sampled in the main branch. The index of the
chosen component is passed to the residual branch where
the polyphase component with the same index is sampled.
An illustration is provided in Fig. 4.

C. Impact of polyphase component selection
method on classification accuracy

In the paper, we saw that APS achieves perfect shift
invariance by selecting the polyphase component with the

(a)

Conv1

Stride-2

Conv2

Stride-2

1×1 Conv

+

(b)

Conv1

Sample))*
poly. comp

Conv2

1×1 Conv

Choose poly.
comp. index:)

Sample))*
poly. comp

)

+

Figure 4. Residual connection block with (a) baseline stride, (b)
APS layer.

highest l2 norm, i.e.

yAPS = yi1j1 , (21)

where i1, j1 = argmax
i,j

{‖yij‖2}1i,j=0.

This can also be achieved, however, with other choices
of shift invariant criteria. Here, we study the impact of
different such criteria on the accuracy obtained on CIFAR-
10 classification. In particular, we explore maximization
of lp norms with p = 1 and ∞ in addition to p = 2. We
also consider minimization of l1 and l2 norms. We run the
experiments on ResNet-18 architecture with 9 different
initial random seeds and report the mean and standard
deviation of achieved accuracy on the test set.

Table 1 shows that choosing the polyphase component
with the largest l∞ norm provides the highest classifi-
cation accuracy which is then followed by choosing the
one with the highest l2 norm and l1 norm. Addition-
ally, the accuracy obtained when choosing polyphase
component with minimum l2 norm is somewhat lower
than the case which chooses maximum l2 norm. We
believe this could be due to the polyphase components
with higher energy containing more discriminative features.

Note that for all cases in Table 1, the achieved classifica-
tion accuracy is ∼ 2% higher than that of baseline ResNet-
18 (reported in the paper). This is because in each case, APS
enables stronger generalization via perfect shift invariance
prior.

D. Experiments with data augmentation
We saw in Section 4.1 of the paper that APS results

in 100% classification consistency and more than 2%
improvement in accuracy on CIFAR-10 dataset for models
trained without any random shifts (data augmentation).

APS criterion Accuracy Consistency
argmax (l1) 93.89± 0.27% 100%
argmax (l2) 94.03± 0.26% 100%
argmax (l∞) 94.14± 0.25% 100%
argmin (l1) 93.92± 0.12% 100%
argmin (l2) 93.90± 0.16% 100%

Table 1. Impact of polyphase component selection method used by
APS on CIFAR-10 classification accuracy.

Here, we assess how baseline sampling compares with APS
when the models are trained on CIFAR-10 dataset with data
augmentation (labelled as DA). The results are reported in
Table 2.

We observe that while data augmentation does improve
classification consistency for baseline models, it is still
lower than APS which yields perfect shift invariance. Clas-
sification accuracy, on the other hand, for both the baseline
and APS is comparable (within the limits of training noise)
when the models are trained with random shifts. This is
not surprising because data augmentation is known to im-
prove classification accuracy on images with patterns sim-
ilar to the ones seen in training set. Note that, as reported
in Section 4.2 of the paper, accuracy of networks with APS
is more robust to image corruptions, and the models con-
tinue to yield 100% classification consistency on all image
distributions.

E. Downsampling circularly shifted images
with odd dimensions

With circular shift, pixels that exit from one end of
a signal roll back in from the other, thereby preventing
any information loss. While this makes circular shifts
convenient for evaluating the impact of downsampling on
shift invariance over finite length signals, they can lead
to additional artifacts at the boundaries when sampling
odd-sized signals. For example, as illustrated in Fig. 5,
while the polyphase components y1 and ỹ0 are identi-
cal, y0 and ỹ1 do not contain the same pixels near the
boundaries. This is because downsampling an odd-sized
signal with stride-2 breaks the periodicity associated with
circular shifts, resulting in minor differences in the sets of
polyphase components near the boundaries.

We investigate the impact of these artifacts by training
ResNet-18 models with different downsampling modules
on CIFAR-10 dataset with images center-cropped to size
30 × 30. These images result in odd-sized feature maps
inside the networks which generate boundary artifacts after
downsampling. The models were then evaluated on 30×30
center-cropped CIFAR-10 test set. Results in Table 3 show

Accuracy (unshifted) Consistency
Model ResNet-18 ResNet-50 ResNet-18 ResNet-50

Baseline 91.96% 90.05% 90.88% 88.96%
APS-3 94.53% 93.80% 100% 100%

Baseline + DA 94.33% 94.77% 97.84% 97.64%
APS-3 + DA 94.61% 94.39% 100% 100%

Table 2. Impact of APS on classification consistency and accuracy (evaluated on unshifted images) obtained using models trained with
random shifts in data augmentation. Models trained without data augmentation are also shown for reference.

Unshifted signal, !

Polyphase
components

"!
""

Shifted signal, #!

Polyphase
components

#"!
#""

Figure 5. Boundary artifacts associated with circular shifts. Down-
sampling an odd length signal and its circular shift can result in
minor differences in polyphase components near their boundaries.

that despite the presence of artifacts, both the classification
consistency and accuracy on unshifted images is greater for
models that use APS.

F. Timing analysis
APS computes the norms of polyphase components for

downsampling consistently to shifts. This leads to a modest
increase in the time required to perform a forward pass in
comparison with baseline network. For example, a forward
pass on a 224 × 224 image with a circular padded baseline
ResNet-18 takes 8.15 ± 0.47ms on a single V-100 GPU.
In comparison, ResNet-18 with APS layers takes 11.88 ±
0.06ms.

References
[1] Aharon Azulay and Yair Weiss. Why do deep convolutional

networks generalize so poorly to small image transforma-
tions? Journal of Machine Learning Research, 20(184):1–25,
2019.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Baseline APS LPF-2 APS-2 LPF-3 APS-3 LPF-5 APS-5
Consistency 88.23% 98.13% 94.28% 98.48% 96.15% 98.65% 98.02% 99.26%

Accuracy (unshifted images) 90.91% 93.99% 93.22% 93.83% 93.56% 94.34% 94.28% 94.22%

Table 3. Classification consistency and accuracy obtained with different variants of ResNet-18 when evaluated on CIFAR-10 test set with
images cropped to size 30× 30. The models were trained without seeing random shifts during training. Despite the presence of boundary
effects caused by circular shifts on odd-sized feature maps, we observe higher consistency and accuracy with models containing APS.

