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1. Architecture and Experimental Settings
Architecture. In all our models, we adopt SPyNet [8] as
our flow estimator because of its simplicity and efficiency.
We use 30 residual blocks in each propagation branch. The
feature channel is set to 64. In IconVSR, we adopt EDVR-
M1 [10] as the additional feature extractor since it main-
tains a good balance between efficiency and quality. The
complexity of the components are summarized in Table 1.
BasicVSR and IconVSR share the same flow estimator and
main network. The main network is a lightweight network,
consisting of only 4.9M parameters. The flow estimator

Table 1. Model complexity of BasicVSR and IconVSR.
BasicVSR IconVSR

Flow Estimator 1.4M 1.4M
Main Network 4.9M 4.9M
Feature Extractor - 2.4M
Total 6.3M 8.7M

and feature extractor are fine-tuned together with the main
network. In all our experiments, every five frames are se-
lected as keyframes. Note that the feature extractor is ap-
plied to keyframes only. Therefore, the computational bur-
den brought by it is insignificant.

Datasets. We consider two widely-used datasets for train-
ing: REDS [7] and Vimeo-90K [11]. For REDS, follow-
ing [10], we use the REDS4 dataset2 as our test set. We
additionally define REDSval43 as our validation set. The
remaining clips are used for training. We use Vid4 [5],

1A lightweight version of EDVR.
2Clips 000, 011, 015, 020 of REDS training set.
3Clips 000, 001, 006, 017 of REDS validation set.

UDM10 [12], and Vimeo-90K-T [11] as test sets along with
Vimeo-90K.

Experimental Settings. When training on REDS, we use a
sequence of 15 frames as inputs, and loss is computed for
the 15 output images. When training on Vimeo-90K, we
temporally augment the sequence by flipping the original
input sequence to allow longer propagation. In other words,
we train with a sequence of 14 frames. During inference,
we take the whole video sequence as input.

We adopt Adam optimizer [3] and Cosine Annealing
scheme [6]. The initial learning rates of the feature extrac-
tor and flow estimator are set to 1×10−4 and 2.5×10−5,
respectively. The learning rate for all other modules is set
to 2×10−4. The total number of iterations is 300K, and the
weights of the feature extractor and flow estimator are fixed
during the first 5,000 iterations. The batch size is 8 and the
patch size of input LR frames is 64×64.

Loss Function. We use Charbonnier loss [1] since it bet-
ter handles outliers and improves the performance over the
conventional `2 loss [4]:

L =
1

N

N∑
i=0

ρ(yi − zi), (1)

where ρ(x) =
√
x2 + ε2, ε=1×10−8, zi denotes the

ground-truth HR frame, and N denotes to the number of
pixels.

Degradations. We train and test our models with 4× down-
sampling using two degradations – Bicubic (BI) and Blur
Downsampling (BD) [2, 9]. For BI, we use the MATLAB
function imresize for downsampling. For BD, we blur



the ground-truths by a Gaussian filter with σ=1.6, followed
by a subsampling every four pixels.

Implementation. We implement our models with PyTorch
and train the models using two NVIDIA Tesla V100 GPUs.
Codes will be made publicly available.

2. Qualitative Results
2.1. Comparison with State of the Arts

In this section, we provide additional qualitative com-
parisons on REDS4 [7], Vimeo-90K [11], Vid4 [5], and
UDM10 [12]. In Fig. 1 to Fig. 4, it is observed that Ba-
sicVSR and IconVSR successfully produce outputs with
finer details and sharper edges. Furthermore, with the pro-
posed information-refill and coupled propagation, IconVSR
further improves the quality of the outputs.

2.2. BasicVSR vs IconVSR

In Fig. 5, we provide additional visual comparison of
BasicVSR and IconVSR to demonstrate the effectiveness
of our proposed components. We see that (1) information-
refill improves the output quality on the fine regions, where
alignment is error-prone, and (2) coupled propagation leads
to sharper edges by better employing the long-term infor-
mation in the sequence.
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Frame 074, Clip 000 Bicubic/24.42 dB PFNL/27.49 dB RBPN/27.51 dB EDVR-M/27.72 dB

EDVR/27.95 dB BasicVSR/28.29 dB IconVSR/28.42 dB GT/PSNR

Frame 070, Clip 020 Bicubic/25.87 dB PFNL/28.62 dB RBPN/28.83 dB EDVR-M/29.66 dB

EDVR/30.14 dB BasicVSR/30.60 dB IconVSR/30.75 dB GT/PSNR

Figure 1. Qualitative comparison on REDS [7].



Sequence 837, Clip 001 Bicubic/22.99 dB PFNL/26.52 dB RBPN/27.37 dB EDVR-M/27.34 dB

EDVR/27.71 dB BasicVSR/27.40 dB IconVSR/27.94 dB GT/PSNR

Bicubic/35.65 dB PFNL/38.26 dB RBPN/40.22 dB EDVR-M/40.01 dB

EDVR/40.78 dB BasicVSR/41.20 dB IconVSR/41.41 dB GT/PSNR

Sequence 943, Clip 010

Figure 2. Qualitative comparison on Vimeo-90K [11].



Bicubic/18.83 dB PFNL/21.74 dB RBPN/22.11 dB EDVR-M/22.17 dB

EDVR/22.31 dB BasicVSR/22.27 dB IconVSR/22.42 dB GT/PSNR

Frame 012, Clip Calendar

IconVSR/25.32 dB GT/PSNRBasicVSR/25.30 dBEDVR/24.93 dB

EDVR-M/24.74 dBRBPN/24.78 dBPFNL/24.48 dBBicubic/22.24 dBFrame 018, Clip Foliage

Figure 3. Qualitative comparison on Vid4 [5].

Bicubic/29.78 dB EDVR-M/36.14 dB EDVR/36.51 dB

BasicVSR/36.49 dB IconVSR/36.84 dB GT/PSNR

Frame 029, Clip Archpeople

Figure 4. Qualitative comparison on UDM10 [12].



Bicubic w/o refill w/ refill GT

Bicubic w/o refill w/ refill GT

Bicubic w/o coupled w/ coupled GT

Bicubic w/o coupled w/ coupled GT

(a) Information-Refill (b) Coupled Propagation

Figure 5. Ablation of IconVSR. With information-refill and coupled propagation, IconVSR produces outputs with details and sharper
edges.


