
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware
Image Synthesis

–Supplementary Material–

1. Novel View Synthesis Details
We demonstrate a potential application of π-GAN: we

can use a trained generator, without modifications, to per-
form single-view reconstruction. We base our method
on the inverse projection procedure outlined by Karras et
al. [4].

We freeze the parameters of our implicit representation
and seek the frequencies γi and phase shifts βi for each
MLP layer i which produce a radiance field that, when ren-
dered, best matches the target image. We initialize γi and
βi to γ̄i and β̄i, the center of mass of frequencies and phase
shifts for each layer. We calculate γ̄i and β̄i simply by
averaging the frequencies and phase shifts of ten thousand
random noise vector inputs. We then run gradient descent
to minimize the mean-squared-error image reconstruction
loss. We additionally introduce an L2 penalty with a weight
of 0.1 during the optimization process to prevent γi and βi

from straying too far from γ̄i and β̄i. We optimize the fre-
quencies and phase shifts with the Adam optimizer over 700
iterations. We initialize the learning rate to 0.01, decaying
by a factor of 0.5 every 200 iterations.

2. Model Details
Mapping Network. The mapping network is parameter-
ized as an MLP with three hidden layers of 256 units each.
The mapping network uses leaky-ReLU activations with a
negative slope of 0.2.

SIREN-based Implicit Radiance Field. The FiLMed-
SIREN [9] backbone of the generator is parameterized as an
MLP with eight FiLMed-SIREN hidden layers of 256 units
each.

Discriminator. Table 1 shows the architecture of the pro-
gressive discriminator. We begin training at low resolutions
and progressively add discriminator stages while upsam-
pling image size. In order to smooth transitions between up-
samples, we fade in the contributions of new layers over ten-
thousand iterations. We utilized CoordConv layers [6] and

Table 1. Discriminator architecture, showing progressive growing
stages.

Activation Output Shape

Input Image
Adapter Block (1×1)
Coord Conv 1 (3×3)
Coord Conv 2 (3×3)
Avg Pool Downsample

-
LeakyReLU (0.2)
LeakyReLU (0.2)
LeakyReLU (0.2)
-

3×128×128
64×128×128
128×128×128
128×128×128
128×64×64

Coord Conv 1 (3×3)
Coord Conv 2 (3×3)
Avg Pool Downsample

LeakyReLU (0.2)
LeakyReLU (0.2)
-

256×64×64
256×64×64
256×32×32

Coord Conv 1 (3×3)
Coord Conv 2 (3×3)
Avg Pool Downsample

LeakyReLU (0.2)
LeakyReLU (0.2)
-

400×32×32
400×32×32
400×16×16

Coord Conv 1 (3×3)
Coord Conv 2 (3x3)
Avg Pool Downsample

LeakyReLU (0.2)
LeakyReLU (0.2)
-

400×16×16
400×16×16
400×8×8

Coord Conv 1 (3×3)
Coord Conv 2 (3×3)
Avg Pool Downsample

LeakyReLU (0.2)
LeakyReLU (0.2)
-

400×4×4
400×4×4
400×2×2

Conv 2d (2×2) 1×1×1

Table 2. FID, KID mean × 100, and IS for π-GAN on CelebA,
Cats, and CARLA datasets.

FID ↓ KID ↓ IS ↑
CelebA @ 64× 64 5.15 0.09 2.28
Cats @ 64× 64 7.36 0.23 2.07
CARLA @ 64× 64 13.59 0.34 3.85

residual connections [2] throughout the discriminator.We
considered using a patch discriminator similar to GRAF, but
found it leads to uneven image quality as SIREN is prone to
local overfitting to the last batch if sufficient coverage of the
space is not maintained.
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Figure 1. COLMAP reconstructions for models trained on CelebA,
obtained by running COLMAP with default parameters and no
known camera poses; GRAF’s results were from their supplement.

Figure 2. Precision-recall plots for π-GAN, GRAF, and HoloGAN
on CelebA, Cats, and CARLA.

3. Additional Training Details

We train the majority of our models across two RTX
6000 GPUs. We begin training at a resolution of 32 × 32,
with an initial batch size of 120. At each upsample, we drop
the batch size by a factor of four to keep the models and
generated images in memory. At higher resolutions, we ag-
gregate across mini-batches to keep an effective batch size
at or above 12, given our GPU constraints. To further re-
duce memory usage, we used PyTorch’s Automatic Mixed
Precision (AMP). π-GAN trained for 10 hours at 32×32,
10 hours at 64×64, and 36 hours at 128×128. Certain ren-
dering and camera parameters were tuned according to the
dataset. We use the true pose distribution when it is known,
e.g. for synthetic datasets, otherwise we make a guess and
tune the distribution as a hyperparameter. We sample cam-
era poses for CelebA from a normal distribution, with a
vertical standard deviation of 0.15 radians and a horizon-
tal standard deviation of 0.3 radians. We sample camera
poses for Cats from a uniform distribution, with horizon-
tal range (−0.75, 0.75) and vertical range (−0.4, 0.4). We
sample poses for CARLA uniformly from the upper hemi-
sphere. We tune the number of samples along each ray to
balance memory consumption and depth resolution. We use
24 samples per ray for CelebA and Cats and 64 samples per
ray for CARLA. We utilize a pinhole perspective camera
with a field of view of 12o for CelebA, 12o for Cats, and
30o for CARLA.

4. π-GAN results @ 64× 64

Table 2 includes additional quantitative results, evaluated
at 64 × 64, in order to allow for comparisons of π-GAN
against models evaluated at lower resolutions.

5. Additional Visual Results

We include additional visual results to show the image
quality and view consistency of π-GAN. Figures 4 and 5
demonstrate the wide range of camera poses supported by
π-GAN for generated faces and cats. Figure 3 shows the
fine detail that π-GAN renders on larger images. Figure 6
shows additional cars with varying elevation and rotation.
We include several videos of faces and cats with the cam-
era following an elliptical trajectory in our supplementary
video.

6. COLMAP Reconstruction

In order to demonstrate the images from π-GAN are
multi-view consistent, we include a COLMAP reconstruc-
tion in Figure 1. We observe that proxy shapes extracted
from pi-GAN lead to more pleasing novel views when pro-
jected to novel camera poses than those from GRAF.
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7. Interpolation and Truncation
Following the method of StyleGAN [3] we can smoothly

interpolate between two generated samples by linearly in-
terpolating between the frequencies and phase shifts corre-
sponding to the two latent codes. We include a result in
Figure 8 in the paper. Along similar lines, it is also possi-
ble to trade off fidelity and diversity at test time following
the method proposed in StyleGAN [3]. Because truncation
reduced the diversity of generated images, we provided all
evaluation metrics without truncation.

8. Precision and Recall
Recent work in generative models have investigated al-

ternative metrics in order to independently evaluate fidelity
and diversity [8, 5]. Figure 2 provides precision-recall
plots on CelebA, Cats, and CARLA, comparing π-GAN to
GRAF and HoloGAN.
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Figure 3. Curated examples from our model trained with CelebA [7].
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Figure 4. Curated examples from our model trained with CelebA, displayed from multiple viewing angles.

Figure 5. Curated examples from our model trained with Cats [10], displayed from multiple viewing angles.
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Figure 6. Curated examples from our model trained with CARLA [1], displayed from multiple viewing angles.

6


