
Supplementary Material - Adaptive Convolutions for Structure-Aware Style
Transfer

Prashanth Chandran1,2 Gaspard Zoss1,2 Paulo Gotardo1 Markus Gross1,2 Derek Bradley1

1) DisneyResearch|Studios, Zurich
2) Department of Computer Science, ETH Zurich

{chandrap,gaspard.zoss,grossm}@inf.ethz.ch, {paulo.gotardo,derek.bradley}@disneyresearch.com

1. Other Results: Multiscale Style Transfer
As described in the main text, Sec. 3.2, the predicted ker-

nels and biases in AdaConv are applied at every resolution
of the decoder independently. This means that it is easy to
mix styles at different scales during decoding, for example
use the kernels predicted from one style for the coarse scale
layers, and the kernels predicted from a different style for
the fine scale layers. We illustrate such an application in
Fig. 1, showing both the complete style-transferred results
for two different styles independently, and in the center of
the figure we show the combined multiscale style transfer
result where the coarse and fine scale styles come from the
different style images. The content image is that on the first
row of Fig. 5, main text.

Style Image Style ImageAdaConv AdaConv

Coarse Style Fine Style
AdaConv

with MuliScale
Styles

Figure 1: AdaConv allows users to combine different styles
at different resolutions to achieve interesting artistic effects.

2. Ablation Studies
In this supplemental section, we present supporting ex-

periments and ablation studies that validate some of our de-
sign choices.

2.1. Comparisons to multi-scale AdaIN

As we show in Fig. 2 of the main paper, our decoder
applies the predicted kernels at multiple scales. This is dif-
ferent from the simple decoder of AdaIN that transfers fea-
ture statistics only at the lowest scale. We modify the stan-
dard AdaIN decoder such that feature statistics are trans-

ferred at multiple scales of the decoder, similar to our de-
coder. We refer to this variant of AdaIn for style trans-
fer as AdaIN-Multiscale. We also modify our multiscale
AdaConv decoder such that it applies the predicted kernels
only at the lowest spatial resolution. We refer to this vari-
ant of our architecture that performs adaptive convolutions
only at the lowest spatial resolution as simply AdaConv-
Singlescale. We train the newly defined modules AdaIn-
Multiscale, AdaConv-Singlescale similarly to AdaIN and
AdaConv respectively. In Fig. 2, we qualitatively compare
the style transfers resulting from the 4 methods.

2.2. Effective of style dimension and groups across
scales

In Fig. 3, we show how changing the number of groups
in our decoder, and the style dimension sd can affect the
resulting style transfer.

2.3. Effect of kernel size

The predicted kernel size is a hyper-parameter in our
method that is set by the user at design time. The kernel
size has an interesting effect on the result of the style trans-
fer. To demonstrate this qualitatively, we train a dedicated
decoder, each with sd = 64 and predict kernels of varying
sizes {1, 3, 5, 7}. We present qualitative results in Fig. 4.
As one would expect, increasing the size of the predicted
kernel, distorts the content further. Using smaller kernels
preserves the contours on the content image better.

2.4. Effect of normalization

AdaIN normalizes each channel in the content features
before transferring the feature statistics from the style im-
age. In our method, since we predict depthwise-separable

1Portions of this figure are © 2017 IEEE. Reprinted, with permission, from
Huang and Belongie [1].

2Portions of this figure from Jing et al. [2] are © 2020, Association for the Ad-
vancement of Artificial Intelligence. All rights reserved. Permission to reuse the
figure for other purposes (or granting it to others) is NOT allowed.

1



Content AdaIN AdaConv - Singlescale AdaIN - Multiscale AdaConv AdaIN AdaConv - Singlescale AdaIN - Multiscale AdaConv

Style 1 Style 2

Figure 2: We qualitatively compare AdaIN, AdaConv-Singlescale (which applies adaptive convolutions only at the lowest
scale), AdaIN-Multiscale (the modified decoder for AdaIN where statistics are transferred at all scales of the decoder) and
AdaConv (our decoder which applies adaptive convolutions at all scales). For this experiment, both AdaConv models use
kernel predictors that predict kernels of size 3x3 and sd = 64. We see that the AdaConv models can result in style transfers
with less artifacts and can capture the structural properties of the style image, while the multiscale AdaIN variant seems to
remain faithful to the content the most1.

(a) Style (b) Content
(c) AdaConv 

(ng=1, 
sd=64)

(d) AdaConv 
(ng=[1, 1/2, 1/4, 1/8], 

sd=64)

(e) AdaConv 
(ng=[1, 1/2, 1/4, 1/8], 

sd=256)

(f ) AdaConv 
(ng=[1, 1/2, 1/4, 1/8], 

sd=512)

Figure 3: (a) The input style image (b) the content image (c) AdaConv decoder trained with ng = 1 at all scales and sd = 64.
(d-f) AdaConv decoder trained with an decreasing number of groups ng = {1, 1/2, 1/4, 1/8} at each scale and sd = 64, 256,
and 512 respectively. Although qualitatively, the results look similar for each of these configurations, balancing the decoder’s
capacity across multiple scales by varying the groups helps with stabilizing the training1.

kernels that convolve with the content features directly, we
found that the explicit normalization of the content features
is not necessary. In Fig. 5, we show multiple examples of
style transfers where we apply AdaConv with and without
normalizing the input features. For this purpose, two sep-
arate models were trained. Though qualitatively the results
look similar, we find that normalizing the input features be-
fore applying AdaConv helps with training stability and aids
convergence.

2.5. Weighting the style loss

Since AdaConv directly manipulates both the statistical
and structural properties of the content image, it can result
in style transfers that prefer the style image structure much

more than AdaIN. We would like to note that even after
explicitly increasing the weight on the style loss, AdaIN
cannot produce similar results. To illustrate this, we re-
train both AdaConv and AdaIN by giving varying impor-
tance (λS) to the style loss {1, 10, 100}. The original im-
plementation of AdaIN uses λS = 10. For this experiment,
to remain fair to AdaIN, we apply the proposed adaptive
convolutions only at the lowest scale of the decoder. The
rest of the decoder for AdaConv is identical to the one used
by AdaIN. As we see in Fig. 6, even with a high weight
of 100 on the style loss, AdaIN cannot recreate the style
structure in the final result as well as AdaConv . We fur-
ther observe that a higher weight on the style for AdaConv

2



Style Content 1 x 1 3 x 3 5 x 5 7 x 7

Figure 4: Predicting kernels of bigger sizes alters the structure of the content image more, while kernels of lower sizes
preserve contours in the content better1,2.

results in greater structural modifications to the content im-
age. Therefore, AdaConv offers the possibility for users to
choose a style weight that will yield the desired style trans-
fer.

3. Additional results for generative models

3.1. Quantitative Results

In Tab. 1, we provide the FID metric of using AdaConv
in styleGAN2’s generator [3]. For these results, we train the
modified generator from Fig. 9 of the main paper on single
Nvidia2080Ti with a batch size of 4. The discriminator only
saw a total of 1.2 million real images during training in our
case compared to around 25 million images in [3]. Though
our FID metrics are well below the state of the art on all the
three datasets, our initial results are qualitatively promising

and indicate that our method can be also used in generative
settings too. We intend to continue our exploration of using
AdaConv for such generative networks in the future.

Dataset niters FID
FFHQ (256 x 256) 300K 22.15

CelebHQ (256 x 256) 300K 25.12
AFHQ-Wild (256 x 256) 300K 10.69
AFHQ-Dog (256 x 256) 300K 18.27

Table 1: Preliminary FID metrics of using AdaConv instead
of AdaIN in styleGAN2 like generative network.

3.2. Qualitative Results

In Fig. 7, Fig. 8, Fig. 9 and Fig. 10, we show synthetic
images generated by using the AdaConv block in style-

3



Style Images

AdaConv (without normalization)

AdaConv (with normalization)

Figure 5: We observed that explicitly normalizing the content features isn’t necessary for AdaConv although it helps with
convergence. For this experiment, AdaConv uses kernel predictors that predict kernels of size 3x3 and sd = 64.

AdaConv

Content

AdaIN

weight = 1 weight = 10 weight = 100 weight = 1 weight = 10 weight = 100 weight = 1 weight = 10 weight = 100

AdaConv

AdaIN

Figure 6: We show the effect of varying the weight of the style loss for both AdaConv and AdaIN. For AdaConv, we use
a kernel size of 3x3 and sd = 64. We can see that even with a high weight on the style, AdaIn is not able to produce
structure-aware style transfer like AdaConv1.

4



GAN2 as discussed in Sec. 4.2 of the main paper. All im-
ages shown in these figures were generated by our network
and any likeness to persons living/dead is purely coinciden-
tal.

References
[1] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV), Oct 2017. 1

[2] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang, Er-
rui Ding, Mingli Song, and Shilei Wen. Dynamic instance
normalization for arbitrary style transfer. In AAAI, 2020. 1

[3] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 3

5



Figure 7: Uncurated generations (ψ = 0.5) on FFHQ dataset at 256 x 256
6



Figure 8: Uncurated generations (ψ = 0.5) on CelebHQ dataset at 256 x 256
7



Figure 9: Uncurated generations (ψ = 0.5) on the AFHQ-wild dataset at 256 x 256
8



Figure 10: Uncurated generations (ψ = 0.5) on the AFHQ-Dog dataset at 256 x 256
9


