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A. Broader Impact

Our publicly-available V+L pre-training resource
CCI12M has the potential to positively impact multiple
vision-and-language tasks. One main aspect that we have
identified is a much higher degree of coverage of long-tail
visual concepts than previous resources, including CC3M.
As a result, we expect the models (pre-)trained on our data
to be more robust in the wild than before.

In addition, our work could benefit the design of new
setups for the downstream tasks that shift away from in-
domain (e.g., COCO/Visual Genome) to out-of-domain/in-
the-wild (e.g., OID), similar to nocaps that our work fo-
cuses heavily on. The setups could also avoid the use of
in-domain data during pre-training that in some cases re-
sulting in transfer learning between (almost) identical sets
of images, e.g., COCO, Visual Genome (VG), VQA2, VG
QA, Visual7W, GQA, GuessWhat, and RefCOCO*.

At the same time, datasets curated from the Web could
come with risks such as unsuitable content (adult content,
profanity) and unintended privacy leakage [27, 10, 11]. We
take the steps in Sect. 2.2 of the main text to mitigate both
of these risks by applying the necessary image and text fil-
tering steps and replacing each person name (celebrities’
included) with the special <PERSON> token.

Less specific to the Web data are the unwanted dataset
biases [0, 33, 37] that are prone to amplification by ma-
chine learning models [5, 39]. Our preliminary analysis in
Sect. 2.3 of the main text shed light on the degree to which
our data exhibits some aspects of these inherent biases, and
we suspect that the better coverage of the tail in fact makes
this issue less severe. Nevertheless, the users of this data
and the systems trained on it shall be aware of such risks
and other ones that might arise.

B. Additional analyses of CC12M

B.1. Out-of-domain (OOD) visual concepts on an
expanded list of datasets

We use the 394 nocaps’ out-of-domain classes as a proxy
for OOD visual concepts and analyze popular vision-and-
language datasets, in addition to CC3M and CC12M that
we focus in the main text. These datasets span a wide
range of use cases, both in terms of tasks (image-to-text
generation, image-and-text matching, visual question an-
swering (VQA), referring expression comprehension, and
multimodal verification), and in terms of the stage during
which they are used (pre-training, fine-tuning/evaluation, or
both.)

e CC3M [31] An instance of text is the caption associ-
ated with each image url of the training split.

e CCI12M (ours) An instance of text is the caption asso-
ciated with each image url. It has been used and is cur-
rently the most popular V+L pre-training dataset [24,

, 13, 34, 40, 25, 23].

* COCO Captions [12] An instance of text comes from
the caption associated with each image of the 2017
training split (five captions per image). This dataset
is designed for the task of image captioning, and has
been used for caption-based image retrieval as well. It
has been used for V+L pre-training [36, 22, 13, 23].

¢ Visual Genome [20] An instance of text comes from
the caption of each region in images of the training
split. This dataset aims to connect vision and lan-
guage through scene graphs and is used for multiple
tasks that include but not limited to dense image cap-
tioning, visual relationship detection and scene graph
parsing, image retrieval and generation, and visual
question answering. It has been used for V+L pre-
training [36, 13].

* SBU Captions [28] An instance of text is the caption
associated with each image url of the “preferred” ver-
sion of the dataset. This dataset is designed for the



Dataset Freq Freq (per 1M)

median mean median  mean
CC3M 462 2325.7 139.2 700.8
CCI12M 3110 13455.8 250.3 1083.1
COCO Captions 37 248.6 62.3 417.1
Visual Genome 133 1114.47 40.7 341.4
SBU Captions 121 798.6 121.0 798.6
VQA2 37 242.0 63.8 417.2
RefCOCOg 1 21.2 8.8 186.4
NLVR2 4 79.9 11.6 245.5

Table 1: Statistics of the (normalized) frequency of nocaps’
out-of-domain visual concepts in the texts of popular vision-and-
language datasets.

task of image captioning. It has been used for V+L
pre-training [36, 13, 21, 23].

* VQA2 [16] An instance of text is the question and
the answers in each image-question-answers triplet of
the train2014 + val2train2014 splits. This dataset is
designed for the task of visual question answering
(VQA) [3]. It has been used for V+L pre-training [36,

1.

e RefCOCOg [26] An instance of text is the referring ex-
pression in each region in images of the training split.
This dataset is designed for the task of referring ex-
pression comprehension [17].

e NLVR2 [35] An instance of text comes from the cap-
tion associated with each pair of images of the training
split. This dataset is used for the task called multi-
modal verification in [25], but designed for the general
task of visual reasoning.

Table 1 summarizes the number of instances whose texts
contain OOD visual concepts for all selected datasets. We
use both the absolute frequency and the normalized one
(per 1M text instances). Essentially, these numbers indi-
cate the degree of OOD coverage. We find that CC12M has
many more OOD instances than all other datasets by a large
margin (6.7x median and 5.8x mean vs. the second best
CC3M). Moreover, CC12M still prevails even after normal-
ization to account for its size. In other words, CC12M cov-
ers these OOD classes better in both absolute and relative
senses.

Fig. 1 provides a more complete picture of the normal-
ized frequency of OOD classes in these datasets, at differ-
ent thresholds. It shows the number of OOD classes (y-
axis) with at least K per 1M captions (x-axis). Evidently,
other datasets experience sharper drops as K increases than
CCI2M (black solid curve). We also find that caption-
ing datasets (solid curves) generally provide better cover-
age than non-captioning datasets: VQA2, RefCOCOg, and
NLVR2 (dashed curves).
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Figure 1: Comparison of nocaps’ out-of-domain coverage degree
among captioning (solid) and 3 other tasks’ (dashed) datasets (see
text for details).
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Figure 2: Performance with sub-sampled CC12M (25% & 50%)
on novel object captioning (left, CIDEr’s on nocaps val) and zero-
shot IR (right, recall@1 on Flickr30K test).

B.2. The impact of the dataset size

We experiment with pre-training on randomly subsam-
pled CC12M, 25% (3.1M) and 50% (6.2M) and evaluate
the pre-trained models on novel object captioning on no-
caps and zero-shot IR on Flickr30K. Fig. 2 shows the larger,
the better trend, with 25% of CC12M gives rise to similar
performance as CC3M.

C. Qualitive Results for Image Retrieval

Fig. 3 provides qualitative image retrieval results on
the Flickr30K dataset, top-3 images retrieved by the from-
scratch model trained on Flickr30K, as well as by two mod-
els pre-trained on CC3M and CC12M and then fine-tuned
on Flickr30K. We report three cases in which CC12M pre-
training helps correct the rankings from the other two mod-
els, which we suspect due to the model getting more famil-
iar with the rare words, highlighted in blue.

D. Pre-Training: Data and Method Variants

D.1. Vision-to-Language Pre-Training on LocNar
Open Images

Table 2 considers pre-training on LocNar Open Images
for the nocapsbenchmark. We observe inferior performance
to both CC3M and CC12M. We attribute this to the long



a blond child holding a sword and dressed in a black
robe is standing next to a stroller

a man sitting on a chair with a beer in his hands
roasting something to eat on a wooden stick

a man and a woman hold the front arm of a large tiger that
is laying on the ground among various medical devices

Figure 3: Qualitative results for the image retrieval task on Flickr30K given the query text (very top) when the model is not pre-trained
(top), pre-trained on CC3M (middle), and pre-trained on CC12M (bottom).

nocaps val

Pre-training in-domain | near-domain

out-of-domain

overall

data CIDEr SPICE CIDEr SPICE

SPICE BLEUI BLEU4 METEOR ROUGE CIDEr SPICE

LocNar Open Images | 76.0 11.6 | 659 10.9 | 489
CC3M | 81.8 11.6 | 73.7 11.1 | 653
CCI2M | 883 123 | 860 11.8 | 91.3

9.3 733 174 235 507 639 107
10.1 746 19.1 241 515 732 110
11.2 785 234 259 545 874 118

Table 2: Comparison between pre-training data. LocNar Open Images’s images are from the same visual domain as nocaps.

All approaches use the ic pre-training objective.

narratives in LocNar having drastically different styles from
those from COCO Captions and nocaps. Furthermore, the
data collection protocol in nocaps does not involve prim-
ing the annotator to mention object names present to the
user, resulting in more generatic terms (instrument vs. gui-
tar). This again highlights the natural fine-grainedness in-
herent in noisy Web data, especially in the case of no-
hypernymized data source (CC12M).

D.2. Pre-Training Strategies

In the main text, we focus on the image captioning (ic)
and the visual-linguistic matching (v1m) learning objec-
tives both during pre-training and fine-tuning stages. Our
motivation here is to keep the setup for evaluating pre-
training data as “clean” as possible. However, other pre-
training strategies exist in the literature and we describe and
test the effectiveness of them in this section.

D.2.1 Masked Vision-to-Language Generation

Given the training image-text pairs, the ic objective pre-
dicts the text from the image. The following objectives
predict (all or part of) the text from the image and (all or

part of) the text. In order to encode both the image and
the text, we concatenate the sequence of image feature vec-
tors and the sequence of text token feature vectors, and use
the Transformer encoder to encode them [22, 13, 34]. This
vanilla fusion is effective, shown to consistently outperform
the co-attentional transformer layer [24, 25], in which the
“query” comes from the other modality than that of “key”
and “value” (see Sect. 2 and Fig. 2 in [24] for details).

Masked Language Modeling (m1m). We mask a percent-
age of the input text tokens at random, and predict the target
text sequence using the decoder. Following BERT [15], we
use a mixed strategy for masking: for each selected token,
we replace it with the mask token [MASK] 80% of the time,
replace it with a random token 10% of the time, and leave it
as is 10% of the time.

Masked Sequence to Sequence Modeling (mass). We ap-
ply the mixed masking strategy as in m1m to the input text
tokens, but require that the mask is applied to consecutive
tokens (i.e., a contiguous segment). The task is to sequen-
tially predict the masked segment using the decoder. This
approach is inspired by MASS [32] and PEGASUS [38].

Results. Table 3 compares ic, mlm, and mass pre-training



nocaps val

Pre-training | in-domain | near-domain | out-of-domain overall
objective CIDEr SPICE CIDEr SPICE CIDEr SPICE BLEUI BLEU4 METEOR ROUGE CIDEr SPICE
ic | 883 123 | 8.0 11.8 | 91.3 11.2 785 234 259 545 874 118
mlm[.1] | 764 11.5 | 684 10.8 | 57.6 9.6 73.0 18.1 23.5 50.6 674 10.6
mlm[.2] | 79.8 11.3 | 763 109 | 76.2 10.2 762 205 241 524 76.8 10.8
mlm[.4] | 86.5 123 | 82.7 11.5 | 86.3 11.3 78.0 227 252 537 84.0 11.6
mlm[.8] | 89.3 125 | 87.5 119 | 91.1 11.3 787 238 259 544 885 119
mass[.1] | 86.0 12.1 | 748 11.1 | 71.7 10.1 758 205 246 525 758 11.0
mass[.2] | 849 12.0 | 781 11.2 | 78.6 10.5 76.0 20.8 24.7 5277 792 112
mass[.4] | 8.7 11.7 | 837 115 | 88.5 10.9 773 228 251 53.6 850 114
mass[.8] | 88.8 122 | 8.1 11.7 | 87.8 10.6 78.1 2377 255 542 86.2 115

Table 3: Comparison between the ic pre-training and masked V+L pre-training. We consider two masking schemes (m1m
and mass) and four masking rates (.1, .2, .4, .8) and report their effects on the nocaps val set.

nocaps val

Pre-training | in-domain | near-domain | out-of-domain overall
Obj ectives CIDEr SPICE CIDEr SPICE CIDEr SPICE BLEUI BLEU4 METEOR ROUGE CIDEr SPICE
ic | 883 123 | 86.0 11.8 | 91.3 11.2 785 234 259 545 874 118
ic+vlim | 88.6 123 | 858 11.9 | 90.0 114 78.0 231 257 544 87.1 119
ic+moc | 91.1 124 | 88.4 12.1 | 93.6 11.4 788 246 262 552 899 120

Table 4: Effect of visual linguistic matching (v1m) and masked object classication (moc) when combined with the ic

objective on the nocaps val set.

objectives. Our main observation is that ic clearly out-
performs masked vision-to-language pre-training when the
masking rate is low. Overall, ic is competitive to m1lm
and mass, slightly below m1m[ . 8] in overall CIDEr, but
higher on out-of-domain CIDEr.

In addition, the trend suggests that it is critical that the
text masking rate is high enough such that the models be-
come less and less reliant on text — that is, when mlm
and mass become more similar to the ic task. Note
that widely-used configurations in the VLP literature on
vision-and-language understanding are the ones with low
text masking rates (0.2 in most cases), which consistently
underperform in our generation setup.

We attribute this result to the models’ (over)reliance
on text during pre-training, which hurts the quality of its
image representations. Supporting evidence for this phe-
nomenon is found in the recent work of [9], which observe
that image+text pre-trained models exhibit a preference for
attending text rather than images during inference (in im-
age and text understanding task). Another supporting ev-
idence is the issue of strong language priors (well-known
in the VQA community), which led to interest in adversar-
ial test sets and other methods to overcome strong language
biases [1, 30, 14, 7]. The same pheonmenon has been re-
ported for multi-modal machine translation, where models
trained on image-+text tend to ignore the image and primar-
ily use the text input [8]. Based on these results, the design
of V+L pre-training objectives that are capable of outper-

forming the image-only ic objective (i.e., overcoming the
language through modeling) is an interesting venue for fu-
ture work.

Another observation is that mass significantly works
better than m1m for lower masking rates. When masking
rates are high, the two objectives become more similar. This
suggests the importance of bridging the gap between pre-
training and fine-tuning (producing consecutive tokens).

D.2.2 Image Captioning with Visual-Linguistic Match-
ing or Masked Object Classification

We explore adding auxiliary losses to the main ic objec-
tive. First, we define a pre-training task that does not require
text.

Masked object classification (moc). We mask one of the
visual regions (selected at random), and predict the cluster
ID of that region [24, 36, 13]. We use a total of 8192 clus-
ters, obtained via K-means over the training data.

Then, we either add the v1m loss (multipled by 0.1) or
the moc loss (multipled by 0.1) to the main ic loss.

Results. Table 4 reports the effect of multi-task pre-training
on the nocaps val set. We observe a slight improvement
when adding moc but a slight drop when adding v1m. This
again shows that ic is a good pre-training task to start with.
We leave developing advanced auxiliary losses on top of it
and multi-task pre-training strategies for future work.



E. Implementation Details

E.1. Data Preprocessing and Feature Embedding

e Text tokenizer: preprocesed with COCO tokenizer
https://github.com/tylin/coco—-caption.
We then create a vocabulary of subtokens out of these.

e Text input embedding (during pre-training only):
subtoken lookup embeddings of size E = 512 are
randomly initialized, followed by Linear(512)-ReLU-
Dropout(0.3)-Linear(512).

* Image’s geometric features: two pairs of coordinates
(top left and bottom right) and the relative area, rep-
resented by relative numbers between 0 and 1. Each
of these 5 numbers is linearly projected into an em-
bedding of size E = 512. We concatenate the result to
get an embedding of size E x 5 = 2560, followed by
Linear(512)-ReLU-Dropout(0.3)-Linear(512).

* Image’s semantic features: each feature vector (a
global image feature vector or one of the 16 box’s
image feature vector, followed by Linear(512)-ReLU-
Dropout(0.3)-Linear(512).

* Image’s combined geometric and semantic features:
we first apply LayerNorm [4] to each of the ge-
ometric or the semantic features. @~ We then add
the two and apply Linear(512)-ReLU-Dropout(0.3)-
Linear(512)-LayerNorm.

* Image’s tag features: same as text input embedding.
For the ic objective, we have a bag of 1 + 16 visual feature
vectors and up to 16 tag feature vectors, each of size 512.
For the v1m objective, where text has to be encoded, we
also have a sequence of text (sub)token feature vectors of
size 512.

E.2. Model

The ic-based task uses a transformer encoder-decoder
model. The v1m-based uses two transformer encoders, one
for texts and the other for images.

 Transformer image encoder: number of layers L = 6.

» Transformer image encoder: vocab embedding size E

=512.

 Transformer image encoder: hidden embedding size H

=1024.
 Transformer image encoder: feedforward/filter size F
= H x 4 = 4096, following [15].

* Transformer image encoder: number of attention
heads A =H/ 64 = 8, following [15].

* Transformer text encoder (for vim only): L, E, H, F,
A are the same as Transformer image encoder.

e Transformer decoder: L, E, H, F, A are the same as
Transformer image encoder.

 Transformer decoder: beam search width = 5.

* Transformer decoder: beam search alpha = 0.6.

* Transformer decoder: maximum output length = 36 for

all datasets except for LocNar which is set to 180.

E.3. Training

¢ Infrastructure: Google Cloud 32-core TPUs.

* Batch size per core: 128 (for a total of 4096)

* Optimizer: Adam [19] with default hyperparameters
(except for the initial learning rate; see below).

e Learning rate — Initial: See Hyperparameter search
below.

e Learning rate — Warm-up epochs: 20 for all pre-
training and fine-tuning experiments.

* Learning rate — Decay rate: 0.95 for all pre-training
and fine-tuning experiments.

* Learning rate — Decay epochs: 25 for all pre-training
and fine-tuning experiments.

e Data augmentation: a set of input visual regions are
permuted during training.

e Maximum number of steps: 2M for vision-to-
language generation pre-training on both CCI2M
and CC3M (and CC3M+CC12M). For vision-and-
language matching, 1M for CC3M instead. See Hyper-
parameter search below for fine-tuning experiments.

E.4. Evaluation

For nocaps evaluation, we submit inference results to
the leaderboard https://evalai.cloudcv.org/web/
challenges/challenge-page/464/overview. Code
for all evaluation metrics can be found at https://
github.com/nocaps—-org/updown-baseline/blob/
master/updown/utils/evalai.py. For in-depth dis-
cussions of these metrics see [18].

Participating in the default formulation of the nocaps
challenge requires that one (i) does not use val and test
Open Images’s ground-truth object detection annotations,
and (ii) does not use image-caption data collected via ad-
ditional annotation protocols. We satisfy both requirements
as we train our object detector on Visual Genome, and both
CC3M and CCI2M are automatically harvested from the
web (alt-text) and belong to the category of noisy web data,
therefore satisfying the second requirement. On the other
hand, models that leverage the Open Images Localized Nar-
ratives dataset (LocNar) [29] for pre-training belong to the
nocaps (XD) leaderboard rather than the default one.

Some of our results on the CC3M benchmark are taken
from the leaderboard, which is located at https://
ai.google.com/research/ConceptualCaptions/
leaderboard?active_tab=leaderboard.

E.S. Hyperparameter search

For pre-training experiments, we do not conduct hyper-
parameter tuning besides an initial stage of exploration as
we believe small changes would not considerably affect the
downstream performance. For instance, we fix an initial
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learning rate to 0.000032 and observe it works consistently
well (on the validation set) across scenarios.

For fine-tuning experiments, we focus on tuning one hy-
perparamter: the initial learning rate. In the case of nocaps,
we also lightly tune the maximum number of training steps
as we observe the model overfitting on COCO Captions. In
all cases, we make sure to allocate similar resources to any
two settings that we make a comparison between, such as
pre-training data sources of CC3M and CC12M.

For generation, the ranges for the initial learning rate are
{3.2e-9, 3.2¢-8, 3.2e-7} and the ranges for the maximum
number of training steps are {5K, 10K}. For matching, the
ranges for the initial learning rate are {3.2e-8, 3.2e-7, 3.2¢-
6} while the maximum number of training steps is fixed to
10K.
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