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This supplementary material provides the following in-
formation: Sec. 1 provides additional details about the peak
finding step of our algorithm (cf . Sec. 4.2 in the main pa-
per). Sec. 2 provides additional details for the experiments
conducted in the main paper, including more qualitative re-
sults (cf . Sec. 5 in the main paper).

1. Peak Finding Algorithm
In the following, we provide additional details on the

peak finding algorithm used in our approach.
The input to the peak finding algorithm is a set of can-

didates for the 3D point position pi. These candidates are
obtained as the closest points on the line li to the lines con-
tained in the neighborhood NK(li) provided by the previ-
ous stage of our algorithm (Neighborhood Estimation, cf .
Sec. 4.2 in the main paper). Each candidate is parameter-
ized as a scalar value βij that provides a 3D point position
on the line li = oi + βvi. Here, oi is any point on the line
and vi is a unit vector describing the direction of the line.
The set can thus be written as:

Ei = {βij |p̂ij = oi + βijvi,∀j ∈ NK(i)} . (1)

We use these candidates to compute the unweighted empiri-
cal cumulative distribution function (CDF) of the candidates
along the line as

Fi(x) =
1

K

∑K

j=1
Iβij<x . (2)

As described in the main paper, Iβij<x is an indicator vari-
able taking value 1 if βij < x and 0 otherwise. This CDF is
the compared against the CDF FU (x) of a uniform distribu-
tion of points along the line.1

As described in the main paper, the Kuiper’s statistic
(KS) is used to compare the two CDFs. More precisely,
the KS is used to identify regions where both CDFs differ

1For practical reasons, we only consider the interval between the mini-
mum and maximum values from Ei when computing FU (x).

Figure 1. Illustrative example of our peak finding algorithm for a
KS threshold of 0.3. The rows from top to bottom indicate three
subsequent iterations of our approach, starting from the top. Left
column: empirical cumulative distribution function (CDF) Fi(x)
of the point position candidates and the CDF of a Uniform distri-
bution FU (x). We show the two points x̄− and x̄+ defining the
interval via red lines and also illustrate the meaning of D− and
D+. Right column: the approximate density distribution of the
candidates along the line, together with the intervals defined by
x̄− and x̄+. As can be seen, the peak finding approach iteratively
narrows down the interval towards the peak of the density distri-
bution.

the most. Intuitively, these regions correspond to intervals
along the line where there is a higher density of candidates
than can be accounted for by a uniform distribution.

As detailed in the main paper, we compute the two
points x̄− = argmaxx (FU (x)− Fi(x)) and x̄+ =
argmaxx (Fi(x)− FU (x)) corresponding to the positions
along the line where the two distributions differ most.
The differences between the distributions at these points
are given as D− = (FU (x̄−)− Fi(x̄−)) and D+ =
(Fi(x̄

+)− FU (x̄+)) and the Kuiper’s statistic is then de-



Scene Point Density Iteration-1 (Coarse Estimation) Iteration 2 and later (Refinement)
Outdoor Scenes from [1] more than5% 500 200
Outdoor Scenes from [1] 5% or less 100 50
Indoor Scenes from [3] more than 5% 250 100
Indoor Scenes from [3] 5% or less 50 25

Table 1. Information about the number of nearest neighbours used for estimating point positions in different scenes, under varying densities
of input line cloud and at different stages of estimation.

fined as KS = D− + D+. As illustrated in Fig. 1, we
recursively use this process to find regions of high density:
applying the process to the interval defined by x̄− and x̄+

(shown via the red lines in the figure), the points x̄− and
x̄+ as well as the Kuiper’s Statistic are re-estimated within
this interval. Once the KS falls below a given threshold,
set to 0.3 for the example shown in Fig. 1, the recursion is
aborted. In practice, we observe that a KS threshold in the
range of 0.3 - 0.4 performs well.

The right column of Fig. 1 shows the density distribution
along the line for the example considered in the figure. As
can be seen, our peak finding approach iteratively shrinks
the interval towards the peak of the density distribution.

There are also instances where multiple peaks are ob-
tained in the distribution of estimates. Such cases cor-
respond to, e.g., situations where a line passes through
more than one region in the scene that contains many of
the original 3D points. To handle such cases, we break
at points where FU (x) intersects Fi(x) from below, i.e.
FU (x) = Fi(x) and Fi(x−) − FU (x−) > 0 where
ε = x − x− > 0 is very small. Let {x1, x2 . . . xk}
be such points of intersection. Then each of the ranges
(xmin, x1), (x1, x2), . . . (xk, xmax) corresponds to a par-
ticular peak. Among all these detected peaks, the one with
the highest KS value is selected.

2. Detailed Results
This section provides additional qualitative results (cf .

Sec. 5 in the main paper). It also contains a more detailed
analysis of the impact of the neighborhood size on the qual-
ity of the recovered point clouds and images (cf . Sec. 4.1
and Fig. 3 in the main paper).

Impact of the neighbourhood size. In the main paper, we
showed results for the case where an oracle provides the true
neighborhood for each 3D point / line based on the original
point cloud. Following the example provided in Sec. 4.1,
we used the 50 closest neighbors for these experiments. In
an ablation study, we thus study the impact of varying the
number of true neighbors. We also list the number of near-
est neighbouring lines/points used in our recovery algorithm
for different scenes in table

Fig. 2 shows cumulative distributions of the errors in re-
covering point positions when varying the number of true
nearest neighbors (NN) for all scenes from the 12 Scenes

dataset [3]. As can be expected from the analysis presented
in the main paper, using a smaller neighborhood leads to
more accurate point estimates. This can be explained by the
relation between the error in estimation of a point’s position
and distance to neighbours used for estimation (cf . Sec. 4.1
in the main paper).

Fig. 3 shows the point clouds and images recovered us-
ing different numbers of nearest neighbors for the Apt2-
Kitchen scene of the 12 Scenes dataset [3]. As can be seen,
the point clouds and images (obtained via the SfM inversion
process from [2] applied on our recovered point clouds) are
visually similar for all numbers of nearest neighbors. This
shows that the recovered point clouds do not need to be ex-
tremely accurate in order to be able to obtain good quality
images.

More results. In contrast to Fig. 3, where we vary the num-
ber of true neighbors, we now fix the number of neighbors
provided by the oracle to 50. As for Fig. 3 in the main paper,
we instead vary the percentage of outliers among the neigh-
bors by randomly replacing a fraction of the true neighbors
with randomly selected points / lines. Fig. 4 quantitatively
compares the cumulative distribution of errors in different
scenarios for all scenes of the 12 scenes dataset. Figures 5
to 9 show additional qualitative results for the recovered
point clouds and the images obtained from them. Figures 10
and 11 further show some qualitative results of our method
for two of the outdoor scenes considered in our paper. As
can be seen, our approach is able to faithfully recover the
3D point clouds and obtain detailed images as long as the
neighborhoods do not contain too many unrelated points /
lines. This holds both for the neighborhoods provided by
the oracle and those estimated by our method. In particular,
the results show that it is possible to recover image details
via the point clouds estimated by our approach. As in the
main paper, we thus conclude that lifting point clouds to
line clouds alone does not guarantee that image details can-
not be recovered.
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Figure 2. Quantitative results showing the cumulative distribution of errors in the recovering point positions. We show results obtained on
all scenes of the 12 Scenes dataset [3], for our approach and when the true neighborhood of each point / line is provided by an oracle. For
the latter, we vary the number of neighbors.
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Figure 3. Qualitative results showing the impact of the size of neighbourhoods used for estimating the point position. For rows 2 through 5,
the true neighbourhood is provided by an oracle and we vary the number of used neighbors. The results are shown on the ”Apt2-Kitchen”
scene from the 12 Scenes dataset [3]. In addition, we also show the original point cloud and the point cloud recovered by our full approach
(which also estimates the neighborhoods). In each case, we show images obtained from the corresponding point clouds via the SfM
inversion process from [2].
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Figure 4. Quantitative results showing the cumulative distribution of errors in the recovering point positions. We show results obtained on
all scenes of the 12 Scenes dataset [3], for our approach and when the true neighborhood (of size 50) of each point / line is provided by an
oracle. For the latter, we vary the level of contamination by outliers.
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Figure 5. Qualitative results for the ’Apt2-Living’ scene from the 12 Scenes dataset [3]. We show point clouds as well as the images
recovered from them using the approach from [2]. Besides the original point cloud and the one recovered by our method, we also show
results obtained by using an oracle to provide the neighborhood of each point / line. For these neighborhoods, we vary the percentage of
outliers contained in them.
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Figure 6. Qualitative results for the ’Office1-Gate362’ scene from the 12 Scenes dataset [3]. We show point clouds as well as the images
recovered from them using the approach from [2]. Besides the original point cloud and the one recovered by our method, we also show
results obtained by using an oracle to provide the neighborhood of each point / line. For these neighborhoods, we vary the percentage of
outliers contained in them.
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Figure 7. Qualitative results for the ’Office2-5a’ scene from the 12 Scenes dataset [3]. We show point clouds as well as the images
recovered from them using the approach from [2]. Besides the original point cloud and the one recovered by our method, we also show
results obtained by using an oracle to provide the neighborhood of each point / line. For these neighborhoods, we vary the percentage of
outliers contained in them.
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Figure 8. Qualitative results for the ’Apt1-Living’ scene from the 12 Scenes dataset [3]. We show point clouds as well as the images
recovered from them using the approach from [2]. Besides the original point cloud and the one recovered by our method, we also show
results obtained by using an oracle to provide the neighborhood of each point / line. For these neighborhoods, we vary the percentage of
outliers contained in them.
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Figure 9. Qualitative results for the ’Office1-Manolis’ scene from the 12 Scenes dataset [3]. We show point clouds as well as the images
recovered from them using the approach from [2]. Besides the original point cloud and the one recovered by our method, we also show
results obtained by using an oracle to provide the neighborhood of each point / line. For these neighborhoods, we vary the percentage of
outliers contained in them.
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Figure 10. Qualitative results showing the recovered point cloud and the images obtained by applying the inversion method of [2] for the
’St Mary’s Church’ scene from the Cambridge dataset [1].
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Figure 11. Qualitative results showing the recovered point cloud and the images obtained by applying the inversion method of [2] for the
’Shop Facade’ scene from the Cambridge dataset [1].
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