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In this supplementary material, we provide,
1. Detailed deviation steps including solving problems referring to the latent image I (i.e. Eq. (7) in the manuscript) and

the blur kernel K (Eq. (12) in the manuscript), and the reason why Richardson-Lucy (RL) is inappropriate to update the blur
kernel;

2. Detailed experimental settings in our ablation studies;
3. More experimental results.

1. Detailed Deviation to Update Latent Image I and Blur Kernel K
1.1. Solving the problem referring to I

According to Eq. (4) of our manuscript, the fidelity term can be presented as:

L(B,M ◦ (I ⊗K))

= − log
∏
i

Poisson(Bi;Mi(I ⊗K)i)

=
∑
i

(Mi(I ⊗K)i − log(Mi(I ⊗K)i)Bi) + C

(1)

where M , B, and P (I) are the latent map, blurry image, and the prior term enforced on the latent image; C is an irrelevant
variant w.r.t. I and can be ignored during the optimization.

Then, we can get Eq. (5) of our manuscript, the problem referring to I is given as following:

min
I

1T (M ◦ (I ⊗K)− log(M ◦ (I ⊗K)) ◦B + λP (I))1, (2)

where ◦ is Hadamard product and λ is the weight parameter. 1 is the all-one vector and 1T
(·)1 is actually the summation of

every element of the matrix (·).
We can solve Eq. (2) by setting its derivative to zero. Before getting its derivative, we rewrite Eq. (2) into vectorized form:

min
I

MT KI− BT log(diag(M)KI) + λ1TP (I)1, (3)

where M, B, and I are M , B and I in their vectorized form, K is the Toeplitz for of K w.r.t. I . For the second term of Eq. (3),
we denote it as A and its derivative w.r.t. I is:

∂A

∂I
=
∂diag(M)KI

∂I
∂log(diag(M)KI)
∂diag(M)KI

∂BT log(diag(M)KI)
∂log(diag(M)KI)

,

= (KT diag(M))diag(
1

diag(M)KI
)B,

= KT diag(
1

diag(M)KI
)(diag(M)B),

(4)
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where the divide operation is element-wise. Then we can solve Eq. (3) by setting its derivative to zero as:

KT M−KT diag(
1

diag(M)KI
)(diag(M)B) + λP ′(I) = 0. (5)

Reformulate the above formation into its matrix form, we have:

M ⊗ K̃ − M ◦B
M ◦ (I ⊗K)

⊗ K̃ + λP ′I(I) = 0. (6)

where K̃ is the transpose of K that flips the shape of K upside down and left-to-right, P ′I(I) is the first order derivative of
PI(I) w.r.t. I . Recall that the sum of the kernel equals to 1, i.e. 1T K̃ = 1, where K̃ is the vectorized form of K̃, and 1 is the
all-one vector. Thus, we further have,

M ⊗ K̃ − M ◦B
M ◦ (I ⊗K)

⊗ K̃ + λP ′I(I) + 1− 1⊗ K̃ = 0, (7)

(
B

I ⊗K
−M + 1)⊗ K̃ = 1 + λP ′I(I), (8)

I ◦ ( B

I ⊗K
−M + 1)⊗ K̃ = I ◦ (1 + λP ′I(I)), (9)

where 1 is the all-one matrix.
In order to solve Eq. (9), we use the fixed point iteration scheme and rewrite it as:

It+1

It
= 1 =

( B
It⊗K −M + 1)⊗ K̃

1 + λP ′I(I
t)

. (10)

Thus, we can finally get Eq. (7) in our manuscript:

It+1 =
It ◦ (( B

It⊗K −M + 1)⊗ K̃)

1 + λP ′I(I
t)

. (11)

1.2. Solving the problem referring to K

Recall that using the RL method to update I is based on the fact that 1T K̃ = 1. However, this requirement is not satisfied
when updating K i.e. 1T I 6= 1. And we cannot use RL scheme to update the blur kernel.

To estimate the blur kernel, we use Gaussian distribution to replace the Poisson one and the fidelity term in Eq. (10) of our
manuscript is:

L(B,M ◦ (I ⊗K))

= − log
∏
i

N (Bi;Mi(I ⊗K)i,Mi(I ⊗K)i)

= − log
∏
i

N (Bi −Mi(I ⊗K)i; 0,W
−1
i,i )

=
∑
i

(Bi −Mi(I ⊗K)i)
2Wi,i + C

= ‖B −M ◦ (I ⊗K)‖2W + C,

(12)

where ‖ • ‖2W is the norm under metric W , and for ∀ x, ‖x‖2W is computed as xTWx; C is an irrelevant variant w.r.t. K and
can be ignored during optimization. W−1 = diag(M ◦ (I ⊗K)) which is fixed when updating K.

As the blur kernel estimation based on image gradients is more stable and accurate, we can then estimate it by:

min
K
‖∇B −M ◦ (∇I ⊗K)‖2W + β‖K‖2, (13)



Algorithm 1 Solving Eq. (15) using the conjugate gradient (CG) method
Input: W ,∇B,∇I , M , β, and the maximum iteration step smax

Output: Ksmax

1: b =W (M∇I)T∇B
2: A =W (M∇I)T M∇I + β
3: P0 = b− AK0

4: r0 = P0

5: for s = 0 to smax do
6: αs = (rTs rs)/(PT

s APs)
7: Ks+1 = Ks + αsPs

8: rs+1 = rs − αsAPs

9: βs = (rTs+1rs+1)/(rTs rs)
10: Ps+1 = rs+1 + βsPs

11: end for

where ∇ is the gradient operator in horizontal and vertical dimensions (i.e. ∇ = {∇h,∇v}). In order to solve Eq. (13), we
rewrite it to the vectorized form:

min
K

(∇B−M∇IK)TW (∇B−M∇IK) + βKT K, (14)

where B and K are the vectorized form ofB andK, M and I are the Toeplitze form ofM and I w.r.t.K. Taking the derivative
of Eq. (14) w.r.t. K and setting it to zero, we have,

W (M∇I)T∇B = (W (M∇I)T M∇I + β)K. (15)

We can use a conjugate gradient method to solve Eq. (15). The overall algorithm is shown in Algorithm 1.

2. Detailed Experimental Settings
In Section 5.2 of our manuscript, we conduct ablation studies to compare our method with existing ones. In this section,

we give detailed experimental settings of these ablation studies.

2.1. Relation with Chen et al.[3]

In [3], the deblurring process is conducted by minimizing the following equation,

min
I,K

∑
i

M i(Bi − (I ⊗K)i)
2 + λP (I) + β‖K‖2. (16)

Note the prior terms for the latent image (i.e. P (I)) and blur kernel (i.e. ‖K‖2) are the same in our work and that from [3].
In [3], the latent image I , blur kernel K, and latent map M are computed as:

I = argmin
I

∑
i

M i(Bi − (I ⊗K)i)
2 + λP (I), (17)

K = argmin
K

∑
i

M i(∇B −∇I ⊗K)2i + β‖K‖2, (18)

M i =

(
exp

(
(Bi − (I ⊗K)i)

2 − α
β

)
+ 1

)−1

. (19)

Please refer to [3] for more details.
In comparison, the map M in our setting is given by :

Mi =

{
1, if (I ⊗K)i ≤ 1

1
(I⊗K)i

, Otherwise
(20)



Algorithm 2 Deblurring process in [3] with our map setting
Input: blurred image B, parameters λ, β and initial kernel K0,0.
Output: blur kernel K and intermediate latent image I .

1: Initialize M0=1, I0,0 = B.
2: t=1, x=1, j=0.
3: while j < jmax do
4: while t < tmax do
5: Compute It,j using Eq. (17) given M t−1 and K;
6: Update M t using Eq. (20) given It,j and K;
7: t← t+ 1
8: end while
9: while Stopping criterion is not satisfied do

10: Compute Kx,j using Eq. (18) given Mx;
11: Update Mx using Eq. (20) given Kx−1,j and I;
12: x← x+ 1;
13: end while
14: j ← j + 1
15: end while

Algorithm 3 Our deblurring process with map setting from [3]
Input: blurred image B, parameters λ, β and initial kernel K0,0.
Output: blur kernel K and intermediate latent image I .

1: Initialize M0=1, I0,0 = B.
2: t=1, x=1, j=0.
3: while j < jmax do
4: while t < tmax do
5: Compute It,j using Eq. (11) given M t−1 and K;
6: Update M t using Eq. (19) given It,j and K;
7: t← t+ 1
8: end while
9: while Stopping criterion is not satisfied do

10: Update W x using Eq. (13) given Kx−1,j and Mx;
11: Compute Kx,j using Eq. (13) given W x and Mx;
12: Update Mx using Eq. (19) given Kx−1,j and I;
13: x← x+ 1;
14: end while
15: j ← j + 1
16: end while

To evaluate the effectiveness of these two map settings, we first replace the map setting in [3] (i.e. M in Eq. (16)) with our
map setting (i.e. M in Eq. (20)) and update I and K according to Eq. 16 and Eq. 17. We denote this experiment as ‘Chen et
al. [3] with our M’ in Figure 8 (b) of our manuscript. The overall algorithm is given in Algorithm 2. Then, we replace our
map setting with that from [3] and update update I and K according to Eq. 2 and Eq. 13. We denote this experiment as ‘Ours
with saturate map of [3]’ in Figure 8 (b) of our manuscript. The overall algorithm is given in Algorithm 3. Deblurring results
from the above-mentioned strategies in dataset [9] are shown in Figure 8 (b) of our manuscript.

2.2. Relation with Whyte et al. [13]

In the non-blind deblurring method [13], the imaging process is modeled as:

B = Poisson(R(I ⊗K)), (21)



Algorithm 4 Extend the non-blind deblurring method [13] into our optimization framework
Input: blurred image B, parameters λ, β and initial kernel K0,0.
Output: blur kernel K and intermediate latent image I .

1: I0,0 = B.
2: t=1, x=1, j=0.
3: while j < jmax do
4: while t < tmax do
5: Compute It,j using Eq. (23) given K;
6: t← t+ 1
7: end while
8: while Stopping criterion is not satisfied do
9: Compute Kx,j using Eq. (13) given W x = diag(R(Ij ⊗Kx,j))−1;

10: x← x+ 1;
11: end while
12: j ← j + 1
13: end while

where R is a smooth function from [1], R(x) = x− 1
a log(1 + exp(a(x− 1))), and a is fixed as 50 in their implementation.

Their fidelity term can be presented as:

L(B, I ⊗K) = R(I ⊗K)− log(R(I ⊗K)) ◦B. (22)

To compare their function-based model with the proposed latent map-based model, we replace our fidelity term Eq. (1)
with theirs Eq. (22) in our updating scheme. Specifically, the latent image is updated via the following formation:

It+1 =
It ◦ ((B◦R

′(It⊗K)
R(It⊗K) −M + 1)⊗ K̃)

1 + λP ′I(I
t)

, (23)

where R′(•) is the derivative of R(•) w.r.t. I , and R′(x) = 1/(1+exp(a(x−1))). The blur kernel is updated by minimizing
the following equation:

min
K
‖B −R(I ⊗K)‖2W , s.t. W−1 = diag(R(I ⊗K)) (24)

This updating process is similar to that of Eq. (13), and we omit it here. The overall deblurring process is illustrated in
Algorithm 4. The result, which is denoted as ‘Extension of Whyte et al.’, is shown in Figure 8 (a) of our manuscript.

3. More Experimental Results
In this section, we show more deblurring results of images with large saturated regions. The results from state-of-the-

art methods are directly provided by the authors or generated with given codes after tuning the hyper-parameters for better
results.



(a) Input (b) Levin et al. [8] (c) Krishnan et al. [6]

(d) Xu et al. [15] (e) Pan et al. [11] (dark) (f) Tao et al. [12]

(g) Yan et al. [16] (h) Pan et al. [9] (text) (i) Kupyn et al. [7]

(j) Chen et al. [2] (local) (k) Chen et al. [3] (OID) (l) Hu et al. [5]

(m) Pan et al. [10] (robust) (n) Dong et al. [4] (o) Ours
Figure 1. Deblurring results of a real-world blurry example. Our method generates results with fewer artifacts.



(a) Input (b) Levin et al. [8] (c) Krishnan et al. [6] (d) Xu et al. [15]

(e) Xu and Jia [14] (f) Pan et al. [11] (dark) (g) Tao et al. [12] (h) Yan et al. [16]

(i) Pan et al. [9] (text) (j) Kupyn et al. [7] (k) Chen et al. [2] (local) (l) Chen et al. [3] (OID)

(m) Hu et al. [5] (n) Pan et al. [10] (robust) (o) Dong et al. [4] (p) Ours
Figure 2. Deblurring results of a real-world blurry example. Our method generates results with fewer artifacts.



(a) Input (b) Levin et al. [8] (c) Krishnan et al. [6]

(d) Xu et al. [15] (e) Pan et al. [11] (dark) (f) Tao et al. [12]

(g) Yan et al. [16] (h) Pan et al. [9] (text) (i) Kupyn et al. [7]

(j) Chen et al. [2] (local) (k) Chen et al. [3] (OID) (l) Hu et al. [5]

(m) Pan et al. [10] (robust) (n) Dong et al. [4] (o) Ours
Figure 3. Deblurring results of a real-world blurry example. Our method generates results with fewer artifacts.



(a) Input (b) Xu and Jia [14] (c) Xu et al. [15]

(d) Zhong et al. [17] (e) Yan et al. [16] (f) Pan et al. [9] (text)

(g) Tao et al. [12] (h) Kupyn et al. [7] (i) Chen et al. [3] (OID)

(j) Hu et al. [5] (k) Pan et al. [10] (robust) (l) Ours
Figure 4. Deblurring results of a real-world blurry example. Our method generates results with fewer artifacts.
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