
A. Supplementary material

A.1. Details of network architectures

We provide detailed architectures of the generator and
the discriminator used in our system in Figure 1. We train
individual models for different categories for 20 epochs on
one Nvidia Tesla V100 GPU. Training each model takes
approximately 6 hours for category chair, 12 hours for air-
plane, and 24 hours for car. The training batch size is set
to 1. We use Adam optimizer with lr=0.0001, beta1=0.9,
beta2=0.999.

A.2. The generator and discriminator masks

First, To ensure each empty voxel in the input content
shape leads to empty voxels in its corresponding area of the
output, we mask out voxels generated outside a predefined
valid region. The region is denoted as the generator mask.
There are two masking options: the “strict” generator mask,
by upsampling the occupied voxels in the content shape to
the desired resolution; and the “loose” generator mask, by
upsampling the occupied voxels in the content shape after
dilating them by 1 voxel. In both cases we use nearest-
neighbor upsampling. In our system, we apply the “loose”
generator mask to the raw generator output to keep only
voxels within the area of the mask. The reason for using the
“loose” mask is to allow the generator to have some free-
dom to accommodate for different styles as well as allow
for more topological variations as the dilation may close
holes. The generator mask enables the generator to focus
its capacity solely on producing plausible voxels within the
valid region.

Second, to ensure each occupied voxel in the input con-
tent shape leads to creation of fine voxels in its correspond-
ing area of the output, we require that an occupied coarse
voxel is also occupied in the downsampled version of the
generator output. We achieve this by training the discrim-
inator to penalize lack of voxels. If all real patches used
in training have at least one voxel occupied at their cen-
ter 43 areas, then any patches that have empty 43 center
areas will be considered fake under the view of the dis-
criminator. Therefore, the discriminator will encourage all
input patches to have occupied voxels in their center ar-
eas. Hence, we can encourage voxels to be generated in-
side the desired region by a. training the discriminator us-
ing patches with occupied center areas as real patches, and
b. training the generator by feeding to the discriminator
those local patches that should have their center areas oc-
cupied. These two can be done easily by applying binary
masks to the discriminator to only keep the signals of the de-
sired patches. For the real patches, given a detailed shape,
we can obtain a discriminator mask by checking each lo-
cal patch for whether their center areas are occupied by at
least one voxel. For the fake (generated) shape, we obtain

its discriminator mask by upsampling the content shape via
nearest-neighbor. In our experiments, we use discriminator
masks with 1/2 of the resolution of the detailed shapes so
that the entire model can fit into the GPU memory.

A.3. Style-content hybrids

We show more results of style-content hybrid shapes in
Figure 2 3 4 5 6 7 8. Note that we lift the bilateral
symmetry assumption for category motorbike, laptop, and
plant.

A.4. Latent space

We show a visualization of the style space for airplanes
in Figure 9 and cars in Figure 10. The visualization for
chairs can be found in the main paper.

A.5. Evaluation metrics

To quantitatively evaluate the quality of the generated
shapes, we propose the following metrics.

Strict-IOU and Loose-IOU. (higher better) Ideally, the
downsampled version of a generator output should be iden-
tical to the input content shape. Therefore, we can use the
IOU (Intersection over Union) between the downsampled
voxels and the input voxels to evaluate how much the output
shape respects the input. We use max-pooling as the down-
sampling method, and the Strict-IOU is defined as described
above. However, since we relaxed the constraints (see Sec
3.1 of the main paper) so that the generator is allowed to
generate shapes in a dilated region, we define Loose-IOU
as a relaxed version of IOU to ignore the voxels in the di-
lated portion of the input:

Loose-IOU =
|Vin ∩ (Vout ∩ Vin)|
|Vin ∪ (Vout ∩ Vin)|

=
|Vin ∩ Vout|
|Vin|

. (1)

where Vin and Vout are input voxels and downsampled out-
put voxels, and |V | counts the number of occupied voxels in
V . Note that our generated shape is guaranteed to be within
the region of the dilated input due to the generator mask.

LP-IOU and LP-F-score (higher better). If all local
patches from an output shape are copied from the given de-
tailed shapes, it is likely that the output shape looks plausi-
ble, at least locally. Therefore, we define the Local Plausi-
bility (LP) to be the percentage of local patches in the output
shape that are “similar” to at least one local patch in the de-
tailed shapes. Specifically, we define the distance between
two patches to be their IOU or F-score. For LP-IOU, we
mark the two patches as “similar” if the IOU is above 0.95;
for LP-F-score, we mark “similar” if the F-score is above
0.95. The F-score is computed with a distance threshold
of 1 (voxel). In our experiments, we sample 123 patches
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in a voxel model. The patch size is a bit less than the re-
ceptive field of our discriminator to reduce computational
complexity. In addition, we want to avoid sampling fea-
tureless patches that are mostly inside or outside the shape,
therefore we only sample surface patches that have at least
one occupied voxel and one unoccupied voxel at their cen-
ter 23 areas. We sample 1000 patches in each testing shape,
and compare them with all possible patches in the detailed
shapes.

Div-IOU and Div-F-score (higher better). For the same
input shape, different style codes should produce different
outputs respecting the styles. Therefore, we want to have
a metric that evaluates the diversity of the outputs with re-
spect to the styles. During the computation of the LP, we
obtain Nijk, the number of local patches from input i, up-
sampled with style j, that are “similar” to at least one patch
in detailed shape k. In an ideal case, any input i upsam-
pled with style j only copies patches from detailed shape
j, therefore we have j = maxkNijk. However, since the
input shape might introduce style bias (e.g., a local struc-
ture that can only be found in a specific detailed shape), we
denote Nik to be the mean of Nijk over all possible j, and
use it to remove such bias. The diversity is defined as

Div = Ei,j [1(j = argmaxk(Nijk −Nik))]. (2)

We obtain Div-IOU and Div-F-score based on the distance
metrics for patches.

Cls-score (lower better). If the generated shapes are in-
distinguishable from real samples, a well-trained classifica-
tion network will not be able to classify whether a shape is
real or fake. We can evaluate the plausibility of the gener-
ated shapes by training such a network and inspect the clas-
sification score. However, the network may easily overfit
if we directly input 3D voxel models, since we have lim-
ited amount of real data. Therefore, we opt to use rendered
images for this task. We train a ResNet [2] using high-
resolution voxels (from which content shapes are downsam-
pled) as real samples, and our generated shapes as fake sam-
ples. The samples are rendered to obtain 24 2562 images
from random views. The images are randomly cropped to
10 642 small patches and feed into the network for training.
We use the mean classification accuracy as the metric for
evaluating plausibility, denoted as Cls-score.

FID-all and FID-style (lower better). Since our method
generates shapes for a single category, it is not well suited
for evaluation with Inception Score [4]. However, we bor-
row the idea from Fréchet Inception Distance (FID) [3] and
propose a customized FID as follows. We first train a 3D
CNN classification network on ShapeNet with 1283 or 2563

voxels depending on the input resolution. Afterwards, we
use the last hidden layer (512-d) as the activation features
for computing FID. We use FID to compare our generated
shapes with all high-resolution voxels from which content
shapes are downsampled, denoted as FID-all; or with a
group of detailed shapes, denoted as FID-style.

Evaluation details For LP and Div, we evaluate on 320
generated shapes (20 contents × 16 styles) since they are
computationally expensive. For other metrics we evaluate
on 1600 generated shapes (100 contents × 16 styles). We
evaluate Div and FID-style with the first 16 styles, and LP
with all 64 styles.

A.6. Ablation study

We provide all quantitative results for our ablation exper-
iments in this section. The numbers for chairs can be found
in Table 1. The numbers for cars can be found in Table 2.
The numbers for airplanes can be found in Table 3.

A.7. GUI application

The video is available at https://youtu.be/xIQ0aslpn8g.
We obtain the 2D style space via T-SNE embedding. After-
wards, we consider each style as a 2D point and obtain the
Delaunay triangulation of the 2D style space. The 8D latent
style code for a given 2D point can be computed by finding
which triangle it is inside and compute a linear interpola-
tion among the three 8D latent codes of the three vertices
via barycentric coordinates.
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Figure 1: The detailed network architectures. Note that the generator for category chair with 323 inputs has smaller receptive
fields by replacing all kernel-5 convolution layers with kernel-3 convolution layers.
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Figure 2: Results by upsampling coarse chairs with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels in the first 6 rows, and downsampled versions of
shapes generated by IM-GAN [1] in the last 5 rows. The input resolution is 323 and the output resolution is 1283.
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Figure 3: Results by upsampling coarse cars with different style codes. We show on the top the detailed shapes that correspond
to the input style codes. The input shapes are coarse voxels in the first 8 rows, and downsampled versions of shapes generated
by IM-GAN [1] in the last 8 rows. The input resolution is 643 and the output resolution is 2563.
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Figure 4: Results by upsampling coarse airplanes with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels in the first 6 rows, and downsampled versions of
shapes generated by IM-GAN [1] in the last 7 rows. The input resolution is 643 and the output resolution is 2563.
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Figure 5: Results by upsampling coarse tables with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels. The input resolution is 163 and the output resolution
is 1283.
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Figure 6: Results by upsampling coarse motorbikes with different style codes. Note that we lift the bilateral symmetry
assumption for this category. We show on the top the detailed shapes that correspond to the input style codes. The input
shapes are coarse voxels. The input resolution is 643 and the output resolution is 2563.
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Figure 7: Results by upsampling coarse laptops with different style codes. Note that we lift the bilateral symmetry assumption
for this category. We show on the top the detailed shapes that correspond to the input style codes. The input shapes are coarse
voxels. The input resolution is 323 and the output resolution is 2563.
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Figure 8: Results by upsampling coarse plants with different style codes. Note that we lift the bilateral symmetry assumption
for this category. We show on the top the detailed shapes that correspond to the input style codes. The input shapes are coarse
voxels. The input resolution is 323 and the output resolution is 2563.
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Figure 9: Visualization of 64 latent codes for airplanes via T-SNE embedding. For each latent code, the corresponding style
shape is displayed in its location.
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Figure 10: Visualization of 64 latent codes for cars via T-SNE embedding. For each latent code, the corresponding style
shape is displayed in its location.
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Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.976 0.993 0.260 0.935 0.325 0.188 0.627 53.2 411.7
No Gen. mask 0.655 0.792 0.452 0.973 0.825 0.806 0.672 121.9 379.9
Strict Gen. mask 0.587 0.587 0.344 0.941 0.150 0.100 0.750 305.5 548.2
No Dis. mask 0.145 0.167 N/A N/A N/A N/A 0.843 2408.9 2714.1
Conditional Dis. 1 0.947 0.981 0.259 0.949 0.291 0.194 0.593 51.3 402.7
Conditional Dis. 3 0.928 0.977 0.246 0.963 0.197 0.206 0.603 55.8 418.2
Proposed method* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
α = 0.0, N = 16 0.704 0.840 0.604 0.956 0.147 0.128 0.695 111.2 409.7
α = 0.2, N = 16 0.583 0.750 0.527 0.971 0.875 0.934 0.667 115.5 371.5
α = 0.5, N = 16 0.570 0.738 0.506 0.970 0.997 0.972 0.690 114.1 367.1
No Lglobal

GAN , N = 16 0.558 0.735 0.491 0.963 1.000 0.981 0.692 125.9 390.3
α = 0.0, N = 32 0.763 0.864 0.551 0.962 0.184 0.156 0.598 131.2 391.7
α = 0.2, N = 32 0.652 0.812 0.495 0.974 0.838 0.831 0.636 103.6 390.1
α = 0.5, N = 32 0.598 0.757 0.470 0.974 0.934 0.934 0.662 111.1 380.0
No Lglobal

GAN , N = 32 0.561 0.728 0.462 0.969 0.997 0.984 0.690 109.1 368.2
α = 0.0, N = 64 0.798 0.868 0.496 0.983 0.163 0.128 0.589 162.5 405.2
α = 0.2, N = 64 0.781 0.864 0.423 0.985 0.353 0.334 0.619 109.2 370.3
α = 0.5, N = 64* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
No Lglobal

GAN , N = 64 0.578 0.741 0.426 0.965 0.950 0.988 0.669 116.3 381.8
σ = 0.0 0.915 0.952 0.435 0.943 0.153 0.125 0.544 71.9 385.7
σ = 0.5 0.869 0.919 0.493 0.952 0.172 0.144 0.580 101.2 379.5
σ = 1.0* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
σ = 1.5 0.592 0.719 0.296 0.985 0.944 0.903 0.667 171.2 413.0
σ = 2.0 0.565 0.614 0.208 0.982 0.575 0.666 0.711 244.8 482.7
β = 0.0 0.730 0.815 0.279 0.967 0.178 0.269 0.669 129.9 391.1
β = 5.0 0.652 0.785 0.448 0.974 0.822 0.775 0.642 135.4 378.7
β = 10.0* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
β = 15.0 0.677 0.803 0.443 0.974 0.788 0.744 0.660 132.2 391.2
β = 20.0 0.672 0.794 0.422 0.976 0.797 0.813 0.651 125.0 380.8

Table 1: Quantitative results for our ablation experiments on chairs. “N/A” is due to empty outputs. The models with * are
the same model.
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Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.991 0.998 0.760 0.998 0.172 0.084 0.493 153.4 457.0
No Gen. mask 0.957 0.988 0.741 0.998 0.928 0.825 0.506 72.7 347.2
Strict Gen. mask 0.829 0.829 0.751 0.995 0.159 0.084 0.538 303.2 569.3
No Dis. mask 0.908 0.930 0.722 0.999 0.356 0.359 0.511 81.6 274.4
Conditional Dis. 1 0.924 0.947 0.738 0.999 0.997 0.853 0.501 119.6 427.2
Conditional Dis. 3 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
Proposed method* 0.953 0.964 0.730 0.998 0.584 0.456 0.494 113.8 401.7
α = 0.0, N = 16 0.882 0.987 0.832 0.996 0.275 0.238 0.600 1069.9 1478.7
α = 0.2, N = 16 0.905 0.978 0.766 0.998 1.000 0.934 0.506 79.8 372.3
α = 0.5, N = 16 0.909 0.975 0.772 0.999 1.000 0.941 0.492 84.5 377.7
No Lglobal

GAN , N = 16 0.900 0.972 0.764 0.998 1.000 0.947 0.500 79.6 377.2
α = 0.0, N = 32 0.927 0.987 0.844 0.999 0.134 0.128 0.582 875.2 1251.7
α = 0.2, N = 32 0.932 0.985 0.753 0.999 1.000 0.831 0.498 86.5 373.2
α = 0.5, N = 32 0.922 0.979 0.756 0.999 1.000 0.909 0.507 77.2 356.1
No Lglobal

GAN , N = 32 0.910 0.970 0.745 0.998 1.000 0.928 0.497 68.0 357.1
α = 0.0, N = 64 0.959 0.987 0.825 0.998 0.091 0.119 0.517 651.9 1019.5
α = 0.2, N = 64* 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
α = 0.5, N = 64 0.942 0.986 0.767 0.999 0.975 0.806 0.500 123.9 414.1
No Lglobal

GAN , N = 64 0.927 0.976 0.739 0.998 1.000 0.931 0.502 62.6 338.2
σ = 0.0 0.977 0.994 0.763 0.995 0.119 0.075 0.499 223.3 548.7
σ = 0.5 0.981 0.996 0.773 0.998 0.084 0.100 0.481 284.4 626.9
σ = 1.0* 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
σ = 1.5 0.938 0.983 0.750 0.999 0.991 0.838 0.490 85.6 363.9
σ = 2.0 0.953 0.979 0.780 0.999 0.744 0.438 0.505 151.9 448.2
β = 0.0 0.725 1.000 0.000 0.999 1.000 0.081 0.754 2759.8 3273.4
β = 5.0 0.946 0.986 0.745 0.999 0.975 0.866 0.490 57.2 320.2
β = 10.0* 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
β = 15.0 0.958 0.989 0.753 0.999 0.894 0.753 0.500 75.8 350.0
β = 20.0 0.950 0.985 0.750 0.998 0.994 0.878 0.505 64.7 334.8

Table 2: Quantitative results for our ablation experiments on cars. The models with * are the same model.
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Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.966 0.980 0.465 0.999 0.166 0.100 0.493 64.8 328.6
No Gen. mask 0.884 0.934 0.477 0.999 0.413 0.259 0.525 66.1 323.7
Strict Gen. mask 0.487 0.487 0.380 0.974 0.069 0.072 0.642 1252.5 1196.9
No Dis. mask 0.508 0.564 0.277 0.998 0.084 0.141 0.539 552.6 859.4
Conditional Dis. 1 0.782 0.855 0.477 0.997 0.347 0.294 0.493 667.5 773.1
Conditional Dis. 3 0.809 0.854 0.443 0.996 0.094 0.119 0.524 717.4 795.9
Proposed method* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
α = 0.0, N = 16 0.843 0.921 0.510 0.999 0.069 0.059 0.516 93.9 331.7
α = 0.1, N = 16 0.764 0.890 0.487 0.997 0.825 0.659 0.502 100.6 307.7
α = 0.2, N = 16 0.720 0.845 0.501 0.990 0.994 0.897 0.504 106.3 308.0
No Lglobal

GAN , N = 16 0.657 0.805 0.516 0.986 1.000 0.947 0.504 132.5 354.9
α = 0.0, N = 32 0.883 0.946 0.503 1.000 0.059 0.066 0.515 95.2 350.9
α = 0.1, N = 32 0.835 0.926 0.459 0.999 0.734 0.538 0.503 71.4 329.4
α = 0.2, N = 32 0.777 0.887 0.481 0.997 0.947 0.788 0.520 79.5 325.6
No Lglobal

GAN , N = 32 0.675 0.818 0.493 0.989 1.000 0.941 0.493 135.2 377.0
α = 0.0, N = 64 0.898 0.959 0.499 0.999 0.059 0.056 0.503 80.2 353.6
α = 0.1, N = 64* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
α = 0.2, N = 64 0.831 0.921 0.463 0.998 0.756 0.600 0.498 67.7 332.0
No Lglobal

GAN , N = 64 0.707 0.833 0.478 0.991 0.997 0.934 0.489 105.8 354.8
σ = 0.0 0.802 0.892 0.422 0.988 0.059 0.041 0.495 205.1 363.0
σ = 0.5 0.883 0.911 0.464 0.997 0.066 0.084 0.508 81.7 327.2
σ = 1.0* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
σ = 1.5 0.845 0.899 0.451 0.997 0.469 0.409 0.518 175.2 372.7
σ = 2.0 0.730 0.767 0.534 0.993 0.278 0.384 0.549 847.1 818.3
β = 0.0 0.384 1.000 0.000 0.940 0.659 0.050 0.811 6342.0 5491.9
β = 5.0 0.892 0.948 0.460 0.999 0.325 0.188 0.492 73.2 310.0
β = 10.0* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
β = 15.0 0.895 0.952 0.468 0.999 0.450 0.319 0.500 63.8 354.6
β = 20.0 0.872 0.946 0.459 0.998 0.531 0.475 0.517 69.2 311.6

Table 3: Quantitative results for our ablation experiments on airplanes. The models with * are the same model.
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