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1. Feature Extraction Model
Different spatial pooling techniques [7] and post-

processing steps such as dimensionality reduction [4] have
been shown to greatly affect retrieval performance. We pro-
vide a detailed analysis of different parameters for selecting
an effective feature extraction model.
PCA and pooling. Given a convolutional feature map from
conv5 3 layer F ∈ RW×H×C , we consider the follow-
ing spatial pooling functions P : RW×H×C → RC : (1)
sum pooling [1] (SPoC), (2) max-pooling [10] (Max), (3)
regional max-pooling [13] (R-MAC), and (4) generalized
mean pooling [9] (GeM). We also perform experiments
while varying the number of dimensions in PCA from 64
to 2,048 with whitening. Figure 1 shows a detailed anal-
ysis of the effect of different pooling techniques and post-
processing steps. Figure 1 (a) shows retrieval performance
of four benchmarks with different PCA dimensions. Even
though the performance of all embeddings decreases as the
feature dimension goes down, embeddings from the classi-
fication model (ResNet50) consistently perform the best for
all dimensions, which further supports our observation in
the paper. Figure 1 (b) shows the mAP for different pooling
techniques. Here, ResNet50 embeddings again consistently
achieve the best performance among embeddings from dif-
ferent pre-trained models on all datasets.
Embeddings from different layers. Figure 2 shows the
performance with embeddings extracted from different lay-
ers in ResNet50 backbone from conv4 1 to conv5 3. Note
that for lower-level embeddings, detection models and clas-
sification models share similar performance, because they
represent similar low-level texture features. However, their
performance diverges for embeddings from high-level lay-
ers. This is an important observation since embeddings ex-
tracted from a higher level (conv5 x) achieve better retrieval
performance across all datasets. This again supports the em-
beddings from classification models as being better suited
for image retrieval.

*Work done during author was in Facebook AI.

2. Student Networks
Figure 3 provide an illustration of the proposed student

network (S3) and two baseline student networks (S1 and
S2) described in the paper. Figure 3 (a) shows the S1 base-
line network, which consists of five bottleneck layers and
directly takes the image as input. (b) shows the S2 baseline
network, which consists of three bottleneck layers. S2 share
the low-level features from the detector and take the feature
map from the second residual stage of the detector model
FI

2
as input. (c) shows the proposed student network, which

utilizes multi-scale features from the detector as inputs to
learn discriminative features.

3. Landmark Retrieval
Table 1 (top) compares different landmark retrieval ap-

proaches with ImageNet pretrained models, including sum
pooling of convolutions (SPoC) [1], maximum activation
of convolutions (MAC) [10], regional maximum activa-
tion (R-MAC) [13], generalized mean pooling (GeM) [9],
and our object embedding approach with the ResNet50
network, (OE-SIR) on ROxford5K and RParis6K dataset
with medium protocol. For a fair comparison, we em-
ploy the same ResNet50 pre-trained on ImageNet for all
the methods. Also, we do not apply any additional post-
processing except PCA whitening. Our approach achieves
the best performance among other approaches using the
same pre-trained network. Table 1 (bottom) compares
different state-of-the-art approaches on the same dataset.
Note that state-of-the-art methods utilize different addi-
tional training data. For example, Radenovic et al. [8]
utilize training data pairs collected from spatial verifica-
tion with local features while Teichmann et al. [11] utilize
Google landmark dataset as additional training data. Here
we also utilize the Google landmark dataset to fine-tune
our model and extract object embeddings from the fine-
tuned model (OE-SIR-FT). Details on the training process
are described in Section 4. Our model achieves competi-
tive performance without any post-processing except PCA
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(a) PCA Dimension (b) Pooling

Figure 1. Analysis of embeddings with (a) different PCA dimension and (b) different pooling techniques. Embeddings learned from
classification model consistently achieve the best performance.
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Figure 2. Performance of embeddings extracted from different layers of the pre-trained models. Embeddings from lower layers of classi-
fication and detection models have similar performance as they learn similar low-level texture features. However, their performance starts
to diverge as we use higher layers, with the classification model achieving better performance.

whitening, compared to the state-of-the-art model that uses
re-ranking techniques such as spatial verification.

4. Implementation Details
For all retrieval experiments, we follow [7] and resize the

longer side of images down to 1024 if it is greater than 1024
and keep the original resolution if it is smaller than 1024.
We use a batch size of 1 to extract features from images
with different resolutions. We apply PCA whitening trained
on 10K images randomly selected from OpenImagesV4 [5]
dataset.

For training the student models in Section 2, we ran-
domly resize and crop images of size 224 × 224 from the
OpenImagesV4 dataset for training, we use a batch size of
64 and learning rate of 1e-3 with Adam optimizer for train-
ing.

For experiments with fine-tuning in Section 3, we use
Google Landmark dataset [12] as the training set for exper-
iments with ROxford5k and RParis6K. We use stochastic
gradient descent with momentum for training, with a learn-

ing rate of 1e-3 and a momentum of 0.9. We use weight
decay of 1e-5 and batch size of 64. Cosine annealing [6]
is applied to expedite the training process. For training ef-
ficiency, we batch the images with similar size and resize
them to some canonical size such as 512× 384, 384× 512,
448 × 448. We use the method described in [2] with soft-
max cross-entropy loss to fine-tune the networks. We use
standard data argumentation such as random cropping and
resizing, and training the network for five epochs. For OE-
SIR experiments with landmark retrieval, we use landmark-
related classes for detection, while for spliced image re-
trieval, we use all 600 classes in the OpenImagesV4 dataset.

5. Qualitative Results
Figure 4 shows some failure cases of the proposed

method on the PIR dataset. The first column shows the
query Spliced image, the second column shows the top-1
retrieved results with the proposed method and the third col-
umn shows the corresponding authentic image. In the first
example (first row), OE-SIR matches the incorrect objects
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Figure 3. An illustration of the baseline student networks and the proposed student network. (a) S1 directly takes image as input to learn
discriminative features. (b) S2 share the low-level feature map F I

2 from detector. (c) The proposed student network leverage multi-scale
features from the detector to efficiently learn the discriminative features.

Method ROxford5K RParis6K
w/ ImageNet pretrained model mAP P@10 mAP P@10

SPoC [1] 35.7 55.4 53.5 90.3
MAC [10] 40.1 61.3 57.3 96.7
R-MAC[13] 49.4 70.4 67.6 98.1
GeM [9] 45.7 67.2 63.6 96.3
OE-SIR (Ours) 53.4 76.0 69.7 98.6

w/ additional training data mAP P@10 mAP P@10

ResNet101-R-MAC [8] 60.9 78.1 78.9 96.9
ResNet101-GeM [3] 64.7 84.7 77.2 98.1
DELF–D2R-R-ASMK [11] 73.3 90.0 80.7 99.1
DELF–D2R-R-ASMK+SP [11] 76.0 93.4 80.2 99.1
OE-SIR-FT (Ours) 78.7 91.8 83.4 98.3

Table 1. Comparison of different approaches on ROxford5K and
RParis6K datasets with or without additional training data. Our
approach achieves the best performance among other baselines
even when a compact student model is deployed. For models with
additional training data, our model achieves competitive perfor-
mance even when comparing with the model using a re-ranking
method such as spatial verification.

(airplane) and therefore fails to retrieve the authentic image.
In the second example, OE-SIR fails to match the object be-
cause of the appearance changes. In the third example, OE-
SIR fails to detect any objects since the object is removed
from the authentic image. The failure cases show the limi-
tation of the proposed method and provide some insight for
future research in this direction.
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