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1. Proofs of equivariance

In this section, we provide proofs of SE(3) equivariance
to the convolution introduced in the main text. Recall that
the SE(3) space can be factorized into the space of 3D ro-
tation {R|R ∈ SO(3)} and 3D translation {T |T ∈ R3}.
A convolution operator equivariant to SE(3) must therefore
satisfy:

∀R ∈ SO(3),R(F ∗ h)(x, g) = (RF ∗ h)(x, g),
∀T ∈ R3, T (F ∗ h)(x, g) = (T F ∗ h)(x, g).

(1)

Theorem 1. The continuous convolution operator

(F ∗ h)(x, g)

=

∫
xi∈R3

∫
gj∈SO(3)

F(xi, gj)h(g−1(x− xi), g−1j g) (2)

is equivariant w.r.t. rotationR ∈ SO(3) and translation T ∈
R3

Proof. Firstly, we prove that Eq.(2) is equivariant to 3D
rotation. For convenience of notation, let x′i = R−1xi, and
g′j = R−1gj .

R(F ∗ h1)(x, g) = (F ∗ h1)(Rx,Rg)

=

∫
xi∈R3

∫
gj∈SO(3)

F(xi, gj)h((Rg)−1(Rx− xi), g−1j Rg)

=

∫
xi∈R3

∫
gj∈SO(3)

F(xi, gj)h(g−1(x−R−1xi), (R−1gj)−1g)

=

∫
x′i∈R3

∫
g′j∈SO(3)

F(Rx′i,Rg′j)h(g−1(x− x′i), g′−1j g)

= (RF ∗ h1)(x, g).

Then, we prove that Eq.(2) is equivariant to 3D transla-
tion. Let x′i = T −1xi. Because T (x− xi) = x− xi:

T (F ∗ h1)(x, g) = (F ∗ h1)(T x, g)

=

∫
xi∈R3

∫
gj∈SO(3)

F(xi, gj)h(g−1(T x− xi), g−1j g)

=

∫
xi∈R3

∫
gj∈SO(3)

F(xi, gj)h(g−1T (x− T −1xi), g−1j g)

=

∫
x′i∈R3

∫
gj∈SO(3)

F(T x′i, gj)h(g−1(x− x′i), g−1j g)

= (T F ∗ h1)(x, g).

The continuous convolution operator is therefore SE(3)
equivariant. Given a finite point set P and a finite rotation
group G, the SE(3) separable convolution consists of two
discrete convolution operators:

(F ∗ h1)(x, g) =
∑
xi∈P

F(xi)h1(g−1(x− xi), g) (3)

(F ∗ h2)(x, g) =
∑
gj∈G

F(gj)h2(x, g−1j g) (4)

For convenience, we use an equivalent definition in the
following proof:

(F ∗ h1)(x, g) =
∑
xi∈P

F(xi, g)h1(g−1(x− xi)) (5)

(F ∗ h2)(x, g) =
∑
gj∈G

F(x, gj)h2(g−1j g) (6)

Theorem 2. The discrete convolution operators given in
Eq.(5),(6) are equivariant w.r.t. rotationR ∈ G and transla-
tion T ∈ R3

Again, we first prove that the two operators are equivari-
ant to 3D rotations in the rotation group G. Following the
notations used in the previous proof, let PR = {x′i|x′i =
Rx, x ∈ P}, GR = {g′j |g′j = R−1g, g ∈ G}:



R(F ∗ h1)(x, g) = (F ∗ h1)(Rx,Rg)

=
∑
xi∈P

F(xi,Rg)h1((Rg)−1(Rx− xi))

=
∑
xi∈P

F(xi,Rg)h1(g−1(x−R−1xi))

=
∑

x′i∈PR

F(Rx′i,Rg)h1(g−1(x− x′i))

= (RF ∗ h1)(x, g).

R(F ∗ h2)(x, g) = (F ∗ h2)(Rx,Rg)

=
∑
gj∈G

F(Rx, gj)h2(g−1j Rg)

=
∑

g′j∈GR

F(Rx,Rg′j)h2(g′−1j g)

= (RF ∗ h2)(x, g).

We then prove that the two operators are equivariant to
3D translation. Let x′i = T −1xi:

T (F ∗ h1)(x, g) = (F ∗ h1)(T x, g)

=
∑
xi∈P

F(xi, g)h1(g−1(T x− xi))

=
∑
xi∈P

F(xi, g)h1(g−1T (x− T −1xi))

=
∑
xi∈P

F(xi, g)h1(g−1(x− T −1xi))

=
∑

x′i∈T −1P

F(T x′i, g)h1(g−1(x− x′i))

= (T F ∗ h1)(x, g).

T (F ∗ h2)(T x, g) = (F ∗ h2)(T x, g)

=
∑
gj∈G

F(T x, gj)h2(g−1j g)

= (T F ∗ h2)(x, g).

Since both operators are SO(3) equivariant and transla-
tion equivariant, we have:

R((F ∗ h1) ∗ h2)(x, g) = (R(F ∗ h1) ∗ h2)(x, g)
= ((RF ∗ h1) ∗ h2)(x, g),

T ((F ∗ h1) ∗ h2)(x, g) = (T (F ∗ h1) ∗ h2)(x, g)
= ((T F ∗ h1) ∗ h2)(x, g).

Thus, the SE(3) separable convolution is equivariant
w.r.t. rotation R ∈ G and translation T ∈ R3, which ap-
proximates equivariance to SE(3).

2. Network Architecture and Parameters

The network architecture used in both experiments is
illustrated in Figure 1. Input points (P ∈ RN×3) are
first lifted to features that are defined in the SE(3) space
(F(xi, gj) : R3 × G → R), by assigning rotation group to
each point and setting its associated features to be constant
1s (denoting occupied space). Therefore, in the first layer,
the network learns to differentiate different input points by
the kernel correlation function (Equation 7 in the main text).
The layer after the separable convolutional layers is an MLP
layer with a symmetry function (average function) that ag-
gregates features in the spatial dimension. We have intro-
duced this layer as a function with implicit kernel formu-
lation (see Equation 8 in the main text). Before the fully
connected layers, a separate branch of unitary convolution
takes the spatially pooled feature defined in SO(3), and out-
puts the attention confidence (see Section 3.3 in the main
text). The output feature of the network can be further pro-
cessed by a softmax layer in the classification task, or an l2
normalization in the shape matching task.

3. More Implementation Details

In the implementation of SE(3) point convolution, we
follow the design principles in [5] to compute a spatially hi-
erarchical local structure of the points, by subsampling the
input points with furthest point sampling and obtaining spa-
tial local neighborhood by the ball searching algorithm. For
the explicit point kernel function, we select a kernel size of
24 with kernel points evenly distributed inside a ball B3r .
The radius r of grouping operator is set as r2 = dσ, where
d is a parameter related to the density of the input points, σ
is a parameter used in the correlation function κ(y, ỹ) de-
scribed in Section 3.1 in the main text. The kernel radius rk
is set as rk = 0.7r.

To achieve more effective rotation group convolution,
inspired by [1], we choose to sample the rotation group
from an axis-aligned 3D model of regular icosahedral. Each
face normal of the icosahedral provides the α and β an-
gles. We additionally sample three γ angles for each face
normal, each separated by 120 degrees. The cardinality
of the rotation set is thus 20 × 3 = 60. Thanks to the
icosahedral symmetry, the set of rotation forms a rotation
group G with closure, associativity, identity and invertibil-
ity. For band-limited filters, a 12-element subgroup is cho-
sen, which transforms each element ofG to its SO(3) neigh-
bors.

It is thus worth noting that while we maintain a sparse
representation for the spatial dimension of the point set,
which takes online computation to find its local structure
in the spatial dimension, the rotation group naturally pos-
sesses a closed grid-like structure. This greatly facilities the
computation for the band-limited group convolution.



Figure 1: An illustration of the network architecture used in both ModelNet and 3DMatch experiments.

4. Details on Experiment Setup

4.1. Details on ModelNet Training

For each training object, we randomly sample 1,024
points from the input point cloud. We train our network
with Adam optimizer. The learning rate is set to 0.001 and
the batch size is 16. The model is trained for 150 epochs
with an exponential decay of learning rate by half for every
50 epochs.

4.2. Details on 3DMatch Training

The training set of 3DMatch consists of RGB-D images
in sequences from 62 indoor scenes. We denote a fused se-
quence of RGB-D images and its converted point cloud as
a fragment of a scene. To generate training examples, we
follow [4] to first fuse the RGB-D images into fragments.
Then we convert the fragments to point clouds and select
pairs that have more than 30% overlapping region, given the
ground-truth camera transformations. Therefore, each pair
of the fragments comes from the same indoor scene. The
point cloud patches used as input to the network are gen-
erated by gathering N=1,024 points within a support region
whose radius is set to 0.4m.

We train a Siamese network that extracts features from
the source and target point clouds in parallel. Inspired
by [2], the network learns from a Batch Hard (BH) triplet
loss, where negative examples are target patches (X p

i ) in a
minibatch that do not correspond to the source patch (X a

i ):

LBH(X ) = 1

X

|X |∑
i=1

max(0, ||f(X a
i )− f(X

p
i )||2−

min
j=1...|X |

j 6=i

||f(X a
i )− f(X

p
j )||2 +m),

where m is the margin for the triplet loss. We use a batch
size of 16 for a mini-batch, which contains pairs of point
cloud patches from the same pair of partially overlapped
fragments. The model is trained for 30 epochs with an ex-
ponential decay of learning rate by half for every 6 epochs.
The choice of optimizer and all other hyperparameters re-
main consistent with the classification network.

4.3. Inference speed.

We compare our model used in the experiment to the
baseline models that employ similar equivariant structures
regarding the inference time. Specifically, we evaluated
our 20-anchor model to align with the settings in [1, 3].
Among the selected baselines, [1, 3] are multi-view image
networks that are SO(3) equivariant; TFN [6] is an example
of “non-separable” SE(3) equivariant network. Our network
is found to be faster than all of the baselines selected, and it
is significantly faster than the SE(3) equivariant framework
that is not separable.

Method OURS-20 EMVN-20 RotationNet TFN
Time 35.4ms 35.9ms 108.0ms 302.9ms
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